• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于荧光动力学的海洋初级生产力快速原位传感技术

殷高方 赵南京 董鸣 马明俊 甘婷婷 覃志松 王翔 黄朋 胡翔

殷高方, 赵南京, 董鸣, 等. 基于荧光动力学的海洋初级生产力快速原位传感技术[J]. 水下无人系统学报, 2023, 31(4): 633-639 doi: 10.11993/j.issn.2096-3920.2023-0072
引用本文: 殷高方, 赵南京, 董鸣, 等. 基于荧光动力学的海洋初级生产力快速原位传感技术[J]. 水下无人系统学报, 2023, 31(4): 633-639 doi: 10.11993/j.issn.2096-3920.2023-0072
YIN Gaofang, ZHAO Nanjing, DONG Ming, MA Mingjun, GAN Tingting, QIN Zhisong, WANG Xiang, HUANG Peng, HU Xiang. Research on Fast in Situ Sensing Technology for Marine Gross Primary Productivity Based on Fluorescence Dynamics Method[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 633-639. doi: 10.11993/j.issn.2096-3920.2023-0072
Citation: YIN Gaofang, ZHAO Nanjing, DONG Ming, MA Mingjun, GAN Tingting, QIN Zhisong, WANG Xiang, HUANG Peng, HU Xiang. Research on Fast in Situ Sensing Technology for Marine Gross Primary Productivity Based on Fluorescence Dynamics Method[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 633-639. doi: 10.11993/j.issn.2096-3920.2023-0072

基于荧光动力学的海洋初级生产力快速原位传感技术

doi: 10.11993/j.issn.2096-3920.2023-0072
基金项目: 国家重点研发计划项目(2021YFC3200100、2022YFC3103901、2016YFC1400600); 国家自然科学基金(62005001、62375270); 安徽省科技重大专项(202003a07020007、202203a07020002)
详细信息
    作者简介:

    殷高方(1979-), 男, 博士生导师, 研究员, 主要从事水生态环境光学监测技术研究

    通讯作者:

    赵南京(1976-), 男, 博士生导师, 研究员, 主要从事环境光学监测技术研究

  • 中图分类号: U674; TJ630.34

Research on Fast in Situ Sensing Technology for Marine Gross Primary Productivity Based on Fluorescence Dynamics Method

  • 摘要: 海洋初级生产力(GPP)是海洋生态系统物质循环和能量流动的基础环节, 是评价海洋生态环境状况的重要指标之一。传统GPP测量方法操作过程繁琐、测量周期长且时效性差。文中围绕海洋GPP快速监测需求, 以叶绿素荧光作为浮游植物光合作用过程探针, 研究了多波段可变光脉冲诱导荧光动力学技术, 研发了海洋GPP快速原位传感器, 并在北极、黄渤海和南海等海域开展了海试应用, 获取了我国黄海近海、渤海湾、南海岛礁周边, 以及太平洋及北冰洋部分海域表层海水的GPP空间分布情况, 为海洋生态环境监测和科学研究提供了大量实时观测数据。海试结果表明, 基于多波段可变光脉冲诱导荧光动力学技术能够快速准确地获取GPP, 可作为海洋生态环境调查和海洋碳汇评估的先进技术手段。

     

  • 图  1  浮游植物光合作用能流及光合电子传递过程示意图

    Figure  1.  Photosynthetic energy flow and photosynthetic electron transfer process of phytoplankton

    图  2  海洋GPP原位传感器结构示意图

    Figure  2.  Structure diagram of marine GPP in-situ sensor

    图  3  海洋GPP原位传感器测量系统光学结构

    Figure  3.  Optical structure of marine GPP in-situ sensor

    图  4  海洋GPP原位传感器

    Figure  4.  Marine GPP in-situ sensor

    图  5  海洋GPP原位传感器性能指标测试结果

    Figure  5.  Performance index test results of marine GPP in-situ sensor

    图  6  海洋GPP传感器应用海域

    Figure  6.  Application sea area of marine GPP in-situ sensor

    图  7  北极科考期间海洋GPP监测结果

    Figure  7.  Monitoring results of marine GPP during Arctic scientific expedition

    图  8  北极科考航线上GPP空间分布图

    Figure  8.  Spatial distribution map of GPP on Arctic scientific expedition route

    图  9  黄渤海海试期间海洋GPP监测结果

    Figure  9.  Monitoring results of marine GPP during Yellow Sea and Bohai Sea trials

    图  10  黄渤海海试航线上GPP空间分布图

    Figure  10.  Spatial distribution map of GPP on Yellow Sea and Bohai Sea trials route

    图  11  南海岛礁科考期间海洋GPP监测结果

    Figure  11.  Monitoring results of marine GPP during South China Sea scientific expedition

    图  12  南海岛礁科考航线上GPP的空间分布图

    Figure  12.  Spatial distribution map of GPP on South China Sea scientific expedition route

    图  13  珠江-琼州海峡和南沙群岛附近海域GPP对比

    Figure  13.  Comparison of GPP between the Pearl River Qiongzhou Strait and sea area near the Nansha Islands

  • [1] Yvon-Durocher G, Allen A P, Cellamare M, et al. Five years of experimental warming increases the biodiversity and productivity of phytoplankton[J]. PLOS Biology, 2015, 13(12): 1002324. doi: 10.1371/journal.pbio.1002324
    [2] Watson R A, Nowara G B, Hartmann K, et al. Marine foods sourced from farther as their use of global ocean primary production increases[J]. Nature Communications, 2015, 6: 7365. doi: 10.1038/ncomms8365
    [3] Holt J, Schrum C, Cannaby H, et al. Potential impacts of climate change on the primary production of regional seas: A comparative analysis of five European seas[J]. Progress in Oceanography, 2016, 140: 91-115. doi: 10.1016/j.pocean.2015.11.004
    [4] Claustre H, Antoine D, Boehme L, et al. Guidelines towards an integrated ocean observation system for ecosystems and biogeochemical cycles[C]//Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society. Venice, Italy: ESA, 2010: 593-612.
    [5] Hemsley V S, Smyth T J, Martin A P, et al. Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic[J]. Environmental Science & Technology, 2015, 49(19): 11612-11621.
    [6] Strasserf R J, Srivastava A. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria[J]. Photochemistry and Photobiology, 1995, 61(1): 32-42. doi: 10.1111/j.1751-1097.1995.tb09240.x
    [7] Falkowski P G, Kolber Z. Estimation of phytoplankton photosynthesis by active fluorescence[J]. Ices Mar. Sci. Symp, 1993, 197: 92-103.
    [8] Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer[J]. Photosynthesis Research, 1986, 10: 51-62. doi: 10.1007/BF00024185
    [9] Suggett D J, Moore C M, Hickman A E, et al. Interpretation of fast repetition rate(FRR) fluorescence: Signatures of phytoplankton community structure versus physiological state[J]. Mar. Ecol. Prog. Ser, 2009, 376(1): 1-19.
    [10] Corno G, Letelier R M, Abbott M R, et al. Assessing primary production variability in the north pacific subtropical gyre: a comparison of fast repetition rate fluorometry and C-14 measurements[J]. Journal of Phycology, 2006, 42(1): 51-60. doi: 10.1111/j.1529-8817.2006.00163.x
    [11] Melrose D C, Oviatt C A, O’Reilly J E, et al. Comparisons of fast repetition rate fluorescence estimated primary production and 14C uptakeby phytoplankton[J]. Marine Ecology Progress Series, 2006, 311: 37-46. doi: 10.3354/meps311037
    [12] Suggett D J, Oxborough K, Baker N R, et al. Fast repetition rate and pulse amplitude modulation chlorophyll a fluorescence measurements for assessment of photosynthetic electron transport in marine phytoplankton[J]. European Journal of Phycology, 2003, 38(4): 371-384. doi: 10.1080/09670260310001612655
    [13] Stirbet A. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem Ⅱ: Basics and applications of the OJIP fluorescence transient[J]. Journal of Photochemistry and Photobiology. B, Biology, 2011, 104(1-2): 236-257. doi: 10.1016/j.jphotobiol.2010.12.010
    [14] Falkowski P G, Raven J A. Aquatic photosynthesis[M]. New Jersey: Princeton University Press, 2013.
    [15] Yin G F, Zhao N J, Shi C Y, et al. Phytoplankton photosynthetic rate measurement using tunable pulsed light induced fluorescence kinetics[J]. Optics Express, 2018, 26(6): 293-300. doi: 10.1364/OE.26.00A293
    [16] 王翔, 殷高方, 赵南京, 等. 荧光动力学法藻类初级生产力测量中光合尺寸单元校正方法研究[J]. 光学学报, 2021, 41(17): 153-159.

    Wang Xiang, Yin Gaofang, Zhao Nanjing, et al. Correction method of photosynthetic size unit in algae primary productivity measurement using fluorescence kinetics[J]. Acta Optica Sinica, 2021, 41(17): 153-159.
    [17] 覃志松, 殷高方, 赵南京, 等. 基于光脉冲诱导快相与弛豫荧光的光合作用参数测量技术[J]. 光子学报, 2017, 46(9): 82-89.

    Qin Zhisong, Yin Gaofang, Zhao Nanjing, et al. Photosynthesis parameters measurement technology based on fast phase anc relaxation fluorescence induced by optical pulses[J]. Acta Photonica Sinica, 2017, 46(9): 82-89.
  • 加载中
图(13)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  41
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-07
  • 修回日期:  2023-08-03
  • 录用日期:  2023-08-03
  • 网络出版日期:  2023-08-09

目录

    /

    返回文章
    返回
    服务号
    订阅号