[1] |
Yvon-Durocher G, Allen A P, Cellamare M, et al. Five years of experimental warming increases the biodiversity and productivity of phytoplankton[J]. PLOS Biology, 2015, 13(12): 1002324. doi: 10.1371/journal.pbio.1002324
|
[2] |
Watson R A, Nowara G B, Hartmann K, et al. Marine foods sourced from farther as their use of global ocean primary production increases[J]. Nature Communications, 2015, 6: 7365. doi: 10.1038/ncomms8365
|
[3] |
Holt J, Schrum C, Cannaby H, et al. Potential impacts of climate change on the primary production of regional seas: A comparative analysis of five European seas[J]. Progress in Oceanography, 2016, 140: 91-115. doi: 10.1016/j.pocean.2015.11.004
|
[4] |
Claustre H, Antoine D, Boehme L, et al. Guidelines towards an integrated ocean observation system for ecosystems and biogeochemical cycles[C]//Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society. Venice, Italy: ESA, 2010: 593-612.
|
[5] |
Hemsley V S, Smyth T J, Martin A P, et al. Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic[J]. Environmental Science & Technology, 2015, 49(19): 11612-11621.
|
[6] |
Strasserf R J, Srivastava A. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria[J]. Photochemistry and Photobiology, 1995, 61(1): 32-42. doi: 10.1111/j.1751-1097.1995.tb09240.x
|
[7] |
Falkowski P G, Kolber Z. Estimation of phytoplankton photosynthesis by active fluorescence[J]. Ices Mar. Sci. Symp, 1993, 197: 92-103.
|
[8] |
Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer[J]. Photosynthesis Research, 1986, 10: 51-62. doi: 10.1007/BF00024185
|
[9] |
Suggett D J, Moore C M, Hickman A E, et al. Interpretation of fast repetition rate(FRR) fluorescence: Signatures of phytoplankton community structure versus physiological state[J]. Mar. Ecol. Prog. Ser, 2009, 376(1): 1-19.
|
[10] |
Corno G, Letelier R M, Abbott M R, et al. Assessing primary production variability in the north pacific subtropical gyre: a comparison of fast repetition rate fluorometry and C-14 measurements[J]. Journal of Phycology, 2006, 42(1): 51-60. doi: 10.1111/j.1529-8817.2006.00163.x
|
[11] |
Melrose D C, Oviatt C A, O’Reilly J E, et al. Comparisons of fast repetition rate fluorescence estimated primary production and 14C uptakeby phytoplankton[J]. Marine Ecology Progress Series, 2006, 311: 37-46. doi: 10.3354/meps311037
|
[12] |
Suggett D J, Oxborough K, Baker N R, et al. Fast repetition rate and pulse amplitude modulation chlorophyll a fluorescence measurements for assessment of photosynthetic electron transport in marine phytoplankton[J]. European Journal of Phycology, 2003, 38(4): 371-384. doi: 10.1080/09670260310001612655
|
[13] |
Stirbet A. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem Ⅱ: Basics and applications of the OJIP fluorescence transient[J]. Journal of Photochemistry and Photobiology. B, Biology, 2011, 104(1-2): 236-257. doi: 10.1016/j.jphotobiol.2010.12.010
|
[14] |
Falkowski P G, Raven J A. Aquatic photosynthesis[M]. New Jersey: Princeton University Press, 2013.
|
[15] |
Yin G F, Zhao N J, Shi C Y, et al. Phytoplankton photosynthetic rate measurement using tunable pulsed light induced fluorescence kinetics[J]. Optics Express, 2018, 26(6): 293-300. doi: 10.1364/OE.26.00A293
|
[16] |
王翔, 殷高方, 赵南京, 等. 荧光动力学法藻类初级生产力测量中光合尺寸单元校正方法研究[J]. 光学学报, 2021, 41(17): 153-159.Wang Xiang, Yin Gaofang, Zhao Nanjing, et al. Correction method of photosynthetic size unit in algae primary productivity measurement using fluorescence kinetics[J]. Acta Optica Sinica, 2021, 41(17): 153-159.
|
[17] |
覃志松, 殷高方, 赵南京, 等. 基于光脉冲诱导快相与弛豫荧光的光合作用参数测量技术[J]. 光子学报, 2017, 46(9): 82-89.Qin Zhisong, Yin Gaofang, Zhao Nanjing, et al. Photosynthesis parameters measurement technology based on fast phase anc relaxation fluorescence induced by optical pulses[J]. Acta Photonica Sinica, 2017, 46(9): 82-89.
|