• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于EEMD和DWT的弱磁异常信号提取方法

宁文茜 王艳华 樊黎明 张晓峻 谢志臻

宁文茜, 王艳华, 樊黎明, 等. 基于EEMD和DWT的弱磁异常信号提取方法[J]. 水下无人系统学报, 2023, 31(4): 568-574 doi: 10.11993/j.issn.2096-3920.2023-0069
引用本文: 宁文茜, 王艳华, 樊黎明, 等. 基于EEMD和DWT的弱磁异常信号提取方法[J]. 水下无人系统学报, 2023, 31(4): 568-574 doi: 10.11993/j.issn.2096-3920.2023-0069
NING Wenxi, WANG Yanhua, FAN Liming, ZHANG Xiaojun, XIE Zhizhen. Weak Magnetic Anomaly Signal Extraction Method Based on EEMD and DWT[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 568-574. doi: 10.11993/j.issn.2096-3920.2023-0069
Citation: NING Wenxi, WANG Yanhua, FAN Liming, ZHANG Xiaojun, XIE Zhizhen. Weak Magnetic Anomaly Signal Extraction Method Based on EEMD and DWT[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 568-574. doi: 10.11993/j.issn.2096-3920.2023-0069

基于EEMD和DWT的弱磁异常信号提取方法

doi: 10.11993/j.issn.2096-3920.2023-0069
基金项目: 自然资源部海洋环境探测技术与应用重点实验室开放基金(MESTA-2020-B009); 陕西省自然科学基础研究计划项目(2020JQ-151); 中央高校基本科研业务费项目资助(D5000220158)
详细信息
    作者简介:

    宁文茜(1998-), 女, 在读硕士, 研究方向为水下弱磁异常探测

    通讯作者:

    樊黎明(1986-), 男, 博士, 助理教授, 研究方向为水下磁异常探测与目标定位、磁传感器优化设计等

  • 中图分类号: TJ630.34; U674

Weak Magnetic Anomaly Signal Extraction Method Based on EEMD and DWT

  • 摘要: 磁异常信号中蕴含着丰富的目标特征信息, 是开展目标定位与识别的基础。然而, 目标的磁异常随着探测距离快速衰减, 使得远距离目标的弱磁异常信号通常埋藏在磁噪声中。针对低信噪比下弱磁异常信号的获取问题, 提出基于集合经验模态分解(EEMD)和离散小波变化(DWT)的弱磁异常信号提取方法。首先, 采用EEMD将弱磁异常信号分解为信号域磁信号和噪声域磁信号。随后, 利用DWT的近似系数表征低频信号的特性, 获取噪声域磁信号的低频信号。最后, 将信号域磁信号与噪声域的低频信号进行叠加, 从而获得弱磁异常信号。为了验证该方法的有效性, 开展仿真实验和外场试验。结果表明: 该方法能够有效地抑制背景磁噪声, 提取目标弱磁异常信号, 可为远距离目标的定位与识别提供有效的磁异常数据。

     

  • 图  1  基于EEMD-DWT的弱磁异常提取方法框图

    Figure  1.  Block diagram of weak magnetic anomaly extrac- tion method based on EEDM-DWT

    图  2  一维磁传感器阵列

    Figure  2.  One-dimensional magnetic sensor array

    图  3  合成的磁异常信号

    Figure  3.  Synthetic magnetic anomaly signal

    图  4  不同方法的弱磁异常提取结果

    Figure  4.  Results of weak magnetic anomaly signal extraction using different methods

    图  5  不同方法的RMSE结果

    Figure  5.  Results of RMSE using different methods

    图  6  河道岸边磁场测量现场

    Figure  6.  Scene of magnetic field measurement at river bank

    图  7  实测磁异常信号提取

    Figure  7.  Measured magnetic anomaly signal extraction

  • [1] Chen L, Feng Y, Wu P, et al. An innovative magnetic anomaly detection algorithm based on signal modulation[J]. IEEE Transactions on Magnetics, 2020, 56(9): 1-9.
    [2] Sanchez V, Li Y, Nabighian M N, et al. Numerical modeling of higher order magnetic moments in UXO discrimination[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2568-83. doi: 10.1109/TGRS.2008.918090
    [3] Zalevsky Z, Bregman Y, Salomonski N, et al. Resolution enhanced magnetic sensing system for wide coverage real time UXO detection[J]. Journal of Applied Geophysics, 2012, 84: 70-76. doi: 10.1016/j.jappgeo.2012.06.003
    [4] Beran L, Billings S, Oldenburg D. Incorporating uncertainty in unexploded ordnance discrimination[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3071-80. doi: 10.1109/TGRS.2011.2112772
    [5] Xiang X, Yu C, Niu Z, et al. Subsea cable tracking by autonomous underwater vehicle with magnetic sensing guidance[J]. Sensors, 2016, 16(8): 1335. doi: 10.3390/s16081335
    [6] Liu D, Xu X, Fei C, et al. Direction identification of a moving ferromagnetic object by magnetic anomaly[J]. Sensors and Actuators A: Physical, 2015, 229: 147-153. doi: 10.1016/j.sna.2015.03.035
    [7] McGary J E. Real-time tumor tracking for four-dimensional computed tomography using SQUID magnetometers[J]. IEEE Transactions on Magnetics, 2009, 45(9): 3351-61. doi: 10.1109/TMAG.2009.2020430
    [8] Sheinker A, Ginzburg B, Salomonski N, et al. Magnetic anomaly detection using high-order crossing method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 50(4): 1095-103.
    [9] Tang Y, Liu Z, Pan M, et al. Detection of magnetic anomaly signal based on information entropy of differential signal[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 512-16. doi: 10.1109/LGRS.2018.2797365
    [10] Wan C, Pan M, Zhang Q, et al. Magnetic anomaly detection based on stochastic resonance[J]. Sensors and Actuators A: Physical, 2018, 278: 11-17. doi: 10.1016/j.sna.2018.05.009
    [11] Liu Y, Liu Z, Pan M, et al. Magnetic anomaly signal space analysis and its application in noise suppression[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 16(1): 130-34.
    [12] Qin Y, Li K, Yao C, et al. Magnetic anomaly detection using full magnetic gradient orthonormal basis function[J]. IEEE Sensors Journal, 2020, 20(21): 12928-40. doi: 10.1109/JSEN.2020.3003680
    [13] Fan L, Kang C, Hu H, et al. Gradient signals analysis of scalar magnetic anomaly using orthonormal basis functions[J]. Measurement Science and Technology, 2020, 31(11): 115105. doi: 10.1088/1361-6501/ab9701
    [14] Fan L, Kang C, Wang H, et al. Adaptive magnetic anomaly detection method with ensemble empirical mode decomposition and minimum entropy feature[J]. Journal of Sensors, 2020, 2020: 1-10.
    [15] Ge J, Wang S, Dong H, et al. Real-time detection of moving magnetic target using distributed scalar sensor based on hybrid algorithm of particle swarm optimization and Gauss–Newton method[J]. IEEE Sensors Journal, 2020, 20(18): 10717-23. doi: 10.1109/JSEN.2020.2994324
    [16] 杜德锋, 陈帅, 王磊, 等. 一种近海水域磁异常信号检测方法[J]. 水下无人系统学报, 2023, 31(2): 269-77. doi: 10.11993/j.issn.2096-3920.202203008

    Du Defeng, Chen Shuai, Wang Lei, et al. A detection method of magnetic anomaly signal in offshore waters[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 269-77. doi: 10.11993/j.issn.2096-3920.202203008
    [17] Hu M, Jing S, Du C, et al. Magnetic dipole target signal detection via convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 1-5.
    [18] Fan L, Kang C, Wang H, et al. Adaptive magnetic anomaly detection method using support vector machine[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 1-5.
    [19] Liu S, Chen Z, Pan M, et al. Magnetic anomaly detection based on full connected neural network[J]. IEEE Access, 2019, 7: 182198-206. doi: 10.1109/ACCESS.2019.2943544
    [20] 李启飞, 吴芳, 韩蕾蕾, 等. 基于 AlexNet 迁移学习的磁异常信号检测方法[J]. 水下无人系统学报, 2020, 28(2): 162-167.

    Li Qifei, Wu Fang, Han Leilei, et al. Detection method of magnetic anomaly signals based on alexnet transfer learning[J]. Journal of Unmanned Undersea Systems, 2020, 28(2): 162-167.
    [21] Nara T, Suzuki S, Ando S. A closed-form formula for magnetic dipole localization by measurement of its magnetic field and spatial gradients[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3291-93. doi: 10.1109/TMAG.2006.879151
    [22] Gao J, Wang J, Zhang L, et al. Magnetic signature analysis for smart security system based on TMR magnetic sensor array[J]. IEEE Sensors Journal, 2019, 19(8): 3149-55. doi: 10.1109/JSEN.2019.2891082
    [23] Zhao M, Kang M, Tang B, et al. Multiple wavelet coefficients fusion in deep residual networks for fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2018, 66(6): 4696-706.
    [24] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. doi: 10.1098/rspa.1998.0193
    [25] Wu Z, Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. doi: 10.1142/S1793536909000047
    [26] Kopsinis Y, McLaughlin S. Development of EMD-based denoising methods inspired by wavelet thresholding[J]. IEEE Transactions on signal Processing, 2009, 57(4): 1351-1362. doi: 10.1109/TSP.2009.2013885
    [27] Huang N E. Hilbert-Huang transform and its applications[M]. Singapore: World Scientific, 2014: 99-116.
  • 加载中
图(7)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  77
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-01
  • 修回日期:  2023-07-08
  • 录用日期:  2023-08-09
  • 网络出版日期:  2023-08-14

目录

    /

    返回文章
    返回
    服务号
    订阅号