[1] |
Chen L, Feng Y, Wu P, et al. An innovative magnetic anomaly detection algorithm based on signal modulation[J]. IEEE Transactions on Magnetics, 2020, 56(9): 1-9.
|
[2] |
Sanchez V, Li Y, Nabighian M N, et al. Numerical modeling of higher order magnetic moments in UXO discrimination[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2568-83. doi: 10.1109/TGRS.2008.918090
|
[3] |
Zalevsky Z, Bregman Y, Salomonski N, et al. Resolution enhanced magnetic sensing system for wide coverage real time UXO detection[J]. Journal of Applied Geophysics, 2012, 84: 70-76. doi: 10.1016/j.jappgeo.2012.06.003
|
[4] |
Beran L, Billings S, Oldenburg D. Incorporating uncertainty in unexploded ordnance discrimination[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3071-80. doi: 10.1109/TGRS.2011.2112772
|
[5] |
Xiang X, Yu C, Niu Z, et al. Subsea cable tracking by autonomous underwater vehicle with magnetic sensing guidance[J]. Sensors, 2016, 16(8): 1335. doi: 10.3390/s16081335
|
[6] |
Liu D, Xu X, Fei C, et al. Direction identification of a moving ferromagnetic object by magnetic anomaly[J]. Sensors and Actuators A: Physical, 2015, 229: 147-153. doi: 10.1016/j.sna.2015.03.035
|
[7] |
McGary J E. Real-time tumor tracking for four-dimensional computed tomography using SQUID magnetometers[J]. IEEE Transactions on Magnetics, 2009, 45(9): 3351-61. doi: 10.1109/TMAG.2009.2020430
|
[8] |
Sheinker A, Ginzburg B, Salomonski N, et al. Magnetic anomaly detection using high-order crossing method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 50(4): 1095-103.
|
[9] |
Tang Y, Liu Z, Pan M, et al. Detection of magnetic anomaly signal based on information entropy of differential signal[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 512-16. doi: 10.1109/LGRS.2018.2797365
|
[10] |
Wan C, Pan M, Zhang Q, et al. Magnetic anomaly detection based on stochastic resonance[J]. Sensors and Actuators A: Physical, 2018, 278: 11-17. doi: 10.1016/j.sna.2018.05.009
|
[11] |
Liu Y, Liu Z, Pan M, et al. Magnetic anomaly signal space analysis and its application in noise suppression[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 16(1): 130-34.
|
[12] |
Qin Y, Li K, Yao C, et al. Magnetic anomaly detection using full magnetic gradient orthonormal basis function[J]. IEEE Sensors Journal, 2020, 20(21): 12928-40. doi: 10.1109/JSEN.2020.3003680
|
[13] |
Fan L, Kang C, Hu H, et al. Gradient signals analysis of scalar magnetic anomaly using orthonormal basis functions[J]. Measurement Science and Technology, 2020, 31(11): 115105. doi: 10.1088/1361-6501/ab9701
|
[14] |
Fan L, Kang C, Wang H, et al. Adaptive magnetic anomaly detection method with ensemble empirical mode decomposition and minimum entropy feature[J]. Journal of Sensors, 2020, 2020: 1-10.
|
[15] |
Ge J, Wang S, Dong H, et al. Real-time detection of moving magnetic target using distributed scalar sensor based on hybrid algorithm of particle swarm optimization and Gauss–Newton method[J]. IEEE Sensors Journal, 2020, 20(18): 10717-23. doi: 10.1109/JSEN.2020.2994324
|
[16] |
杜德锋, 陈帅, 王磊, 等. 一种近海水域磁异常信号检测方法[J]. 水下无人系统学报, 2023, 31(2): 269-77. doi: 10.11993/j.issn.2096-3920.202203008Du Defeng, Chen Shuai, Wang Lei, et al. A detection method of magnetic anomaly signal in offshore waters[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 269-77. doi: 10.11993/j.issn.2096-3920.202203008
|
[17] |
Hu M, Jing S, Du C, et al. Magnetic dipole target signal detection via convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 1-5.
|
[18] |
Fan L, Kang C, Wang H, et al. Adaptive magnetic anomaly detection method using support vector machine[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 1-5.
|
[19] |
Liu S, Chen Z, Pan M, et al. Magnetic anomaly detection based on full connected neural network[J]. IEEE Access, 2019, 7: 182198-206. doi: 10.1109/ACCESS.2019.2943544
|
[20] |
李启飞, 吴芳, 韩蕾蕾, 等. 基于 AlexNet 迁移学习的磁异常信号检测方法[J]. 水下无人系统学报, 2020, 28(2): 162-167.Li Qifei, Wu Fang, Han Leilei, et al. Detection method of magnetic anomaly signals based on alexnet transfer learning[J]. Journal of Unmanned Undersea Systems, 2020, 28(2): 162-167.
|
[21] |
Nara T, Suzuki S, Ando S. A closed-form formula for magnetic dipole localization by measurement of its magnetic field and spatial gradients[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3291-93. doi: 10.1109/TMAG.2006.879151
|
[22] |
Gao J, Wang J, Zhang L, et al. Magnetic signature analysis for smart security system based on TMR magnetic sensor array[J]. IEEE Sensors Journal, 2019, 19(8): 3149-55. doi: 10.1109/JSEN.2019.2891082
|
[23] |
Zhao M, Kang M, Tang B, et al. Multiple wavelet coefficients fusion in deep residual networks for fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2018, 66(6): 4696-706.
|
[24] |
Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. doi: 10.1098/rspa.1998.0193
|
[25] |
Wu Z, Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. doi: 10.1142/S1793536909000047
|
[26] |
Kopsinis Y, McLaughlin S. Development of EMD-based denoising methods inspired by wavelet thresholding[J]. IEEE Transactions on signal Processing, 2009, 57(4): 1351-1362. doi: 10.1109/TSP.2009.2013885
|
[27] |
Huang N E. Hilbert-Huang transform and its applications[M]. Singapore: World Scientific, 2014: 99-116.
|