Design of an Underwater Real-Time Integrated Electromagnetic Detection System
-
摘要: 针对目前水下目标电磁探测系统探测物理量单一、实时性差、综合适应能力弱等问题, 文中采用超低噪声信号检测和放大、自动增益控制等技术, 研制了一套水下实时综合电磁探测系统, 实现了高精度、宽动态范围的电磁信号采集、存储及网络实时传输。实验室环境测试验证了该系统具备电磁场信号的高精度采集和实时传输能力, 电场通道本底噪声为2 nV/
$\sqrt {{\text{Hz}}} $ @1 Hz, 磁场通道本底噪声为0.12 μV/$\sqrt {{\text{Hz}}} $ @1 Hz, 网络实时传输速率为6.32 MB/s。Abstract: To address the issues of single physical quantity detection, poor real-time performance, and weak comprehensive adaptability in current underwater target electromagnetic detection systems, an underwater real-time integrated electromagnetic detection system was developed by using the technology of ultra-low noise signal detection and amplification, automatic gain control, etc. The system achieved high-precision electromagnetic signal acquisition, storage, and network real-time trans- mission within a wide dynamic range. Laboratory tests have validated the system’s ability to acquire high-precision electromagnetic field signals and transmit them in real time. The background noise of the electric field channel is 2 nV/$\sqrt {{\text{Hz}}} $ @1 Hz, and that of the magnetic field channel is 0.12 μV/$\sqrt {{\text{Hz}}} $ @1 Hz, while the network real-time transmission rate is 6.32 MB/s. -
表 1 系统测试指标
Table 1. Parameters of system test
指标 数值 电场通道噪声/(nV/$\sqrt {{\text{Hz}}} $@1 Hz) 2 磁场通道噪声/(μV/$\sqrt {{\text{Hz}}} $@1 Hz) 0.12 电场通道增益倍数 500~50 000 电场通道/个 3 感应磁场通道/个 2 环境总磁场通道/个 3 网络带宽/(MB/s) 6.32 程控增益支持倍数 0、1、2、5、10、20、50、100 -
[1] 杨益新, 韩一娜, 赵瑞琴, 等. 海洋声学目标探测技术研究现状和发展趋势[J]. 水下无人系统学报, 2018, 26(5): 369-386.Yang Yixin, Han Yina, Zhao Ruiqin, et al. Ocean acoustic target detection technologies: A review[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 369-386. [2] 邢阳阳. 水下目标探测与跟踪关键技术研究[J]. 科学技术创新, 2019(14): 44-45. doi: 10.3969/j.issn.1673-1328.2019.14.024 [3] 朱禛, 王向军, 徐庆林, 等. 舰船腐蚀静电场在海水中的传播规律研究[J]. 舰船科学技术, 2022, 44(10): 107-110.Zhu Zhen, Wang Xiangjun, Xu Qinglin, et al. Research on propagation law of corrosive electrostatic field of ship in seawater[J]. Ship Science and Technology, 2022, 44(10): 107-110. [4] 梅风华, 侯旺. 非声探潜技术在航空尾迹探潜上的应用[J]. 电光与控制, 2017, 24(7): 62-65. doi: 10.3969/j.issn.1671-637X.2017.07.013Mei Fenghua, Hou Wang. Application of non-acoustic submarine detection technology in aviation antisubmarine of trailing detection[J]. Electronics Optics & Control, 2017, 24(7): 62-65. doi: 10.3969/j.issn.1671-637X.2017.07.013 [5] 彭亮, 王建勋, 邓海华, 等. 水下非声探测与隐身技术综述[J]. 舰船科学技术, 2014, 36(5): 6-10. doi: 10.3404/j.issn.1672-7649.2014.05.002Pen Liang, Wang Jianxun, Deng Haihua, et al. Review of the non-acoustic detection and stealth technology[J]. Ship Science and Technology, 2014, 36(5): 6-10. doi: 10.3404/j.issn.1672-7649.2014.05.002 [6] 胡正旺, 吕邦来, 杜劲松, 等. 最小结构磁化率成像反演方法在水下目标探测中的应用[J]. 地球科学, 2021, 46(9): 3376-3384.Hu Zhengwang, Lü Banglai, Du Jinsong, et al. Application of susceptibility imaging method by minimum structure[J]. Earth Science, 2021, 46(9): 3376-3384. [7] 程锦房, 喻鹏, 张伽伟, 等. 水下电场探测定位技术应用研究现状[J]. 海军工程大学学报, 2022, 34(4): 68-74. doi: 10.7495/j.issn.1009-3486.2022.04.012Cheng Jinfang, Yu Peng, Zhang Jiawei et al. Application and development of underwater electricfield detection and location tchnology[J]. Journal of Naval University of Engineering, 2022, 34(4): 68-74. doi: 10.7495/j.issn.1009-3486.2022.04.012 [8] Zolotarevskii Y M, Bulygin F V, Ponomarev A N, et al. Methods of measuring the low-frequency electric and magnetic fields of ships[J]. Measurement Techniques, 2005, 48(11): 1140-1144. doi: 10.1007/s11018-006-0035-6 [9] Sulzberger G, Bono J, Allen G I, et al. Demonstration of the real-time tracking gradiometer for buried mine hunting while operating from a small unmanned underwater vehicle[C]//Oceans 2006, Boston, MA, USA: IEEE, 2006. [10] 徐震寰, 李予国, 罗鸣. 船舶轴频电磁场信号的海底测量及其特性分析[J]. 哈尔滨工程大学学报, 2018, 39(4): 652-657. doi: 10.11990/jheu.201612066Xu Zhenhuan, Li Yuguo, Luo Ming. Seabed survey and property analysis of ship’s shaft-rate electromagnetic signal[J]. Journal of Harbin Engineering University, 2018, 39(4): 652-657. doi: 10.11990/jheu.201612066 [11] 邓涛. FPGA芯片功能剖析及应用优势[J]. 数字通信世界, 2017(4): 157-158. doi: 10.3969/J.ISSN.1672-7274.2017.04.071