• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下航行器视觉控制技术综述

高剑 何耀祯 陈依民 张元旭 杨旭博 李宇丰 张桢驰

高剑, 何耀祯, 陈依民, 等. 水下航行器视觉控制技术综述[J]. 水下无人系统学报, 2024, 32(2): 282-294 doi: 10.11993/j.issn.2096-3920.2023-0061
引用本文: 高剑, 何耀祯, 陈依民, 等. 水下航行器视觉控制技术综述[J]. 水下无人系统学报, 2024, 32(2): 282-294 doi: 10.11993/j.issn.2096-3920.2023-0061
GAO Jian, HE Yaozhen, CHEN Yimin, ZHANG Yuanxu, YANG Xubo, LI Yufeng, ZHANG Zhenchi. Review of Visual Control Technology for Undersea Vehicles[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 282-294. doi: 10.11993/j.issn.2096-3920.2023-0061
Citation: GAO Jian, HE Yaozhen, CHEN Yimin, ZHANG Yuanxu, YANG Xubo, LI Yufeng, ZHANG Zhenchi. Review of Visual Control Technology for Undersea Vehicles[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 282-294. doi: 10.11993/j.issn.2096-3920.2023-0061

水下航行器视觉控制技术综述

doi: 10.11993/j.issn.2096-3920.2023-0061
基金项目: 国家自然科学基金项目资助(51979228, 52102469).
详细信息
    作者简介:

    高剑:高 剑(1979-), 男, 教授, 主要研究方向为水下航行器控制技术

  • 中图分类号: TJ630; U674.941

Review of Visual Control Technology for Undersea Vehicles

  • 摘要: 视觉控制是通过视觉信息进行环境和自身状态感知的一种控制方式, 文中将该技术应用于水下航行器控制, 并对不同应用场景下的相关研究进展、难点与趋势进行分析。首先介绍水下航行器视觉控制技术发展现状与任务场景, 然后对水下图像增强、目标识别与位姿估计技术进行介绍, 并从水下视觉动力定位与目标跟踪、水下航行器对接及水下目标抓取作业等3个任务场景, 对水下航行器视觉控制技术发展现状进行总结和分析, 最后梳理了水下航行器视觉控制技术的难点与发展趋势。

     

  • 图  1  常见的水下航行器

    Figure  1.  Common undersea vehicles

    图  2  视觉与机械臂抓取协调控制试验场景

    Figure  2.  Experimental scenario of coordinated control of vision and manipulator grasping

    图  3  水下图像增强与复原效果对比

    Figure  3.  Comparison of underwater visual image enhancement and restoration effects

    图  4  MODA算法识别结果

    Figure  4.  The recognition results of MODA

    图  5  FORSSEA航行器视觉动力定位过程

    Figure  5.  Visual dynamic positioning of FORSSEA undersea vehicle

    图  6  水下航行器动力定位实验场景

    Figure  6.  Experiment scenario of undersea vehicle dynamic positioning

    图  7  西北工业大学水下航行器动力定位试验场景

    Figure  7.  Dynamic positioning scenario of undersea vehicles at Northwestern Polytechnical University

    图  8  水下航行器对接过程

    Figure  8.  Docking process of undersea vehicle

    图  9  中国科学院沈阳自动化研究所航行器水下对接装置

    Figure  9.  Underwater docking device of Shenyang Institute of Automation Chinese Academy of Sciences

    图  10  西北工业大学水池对接实验场景

    Figure  10.  Experimental scenario of pool docking of North- western Polytechnical University

    图  11  水下航行器水池目标抓取场景

    Figure  11.  Undersea vehicle by target grasping in water pool scene

    图  12  水下目标抓取的机器人视角

    Figure  12.  Robot Perspective of Underwater Target Grasping

    图  13  大连海事大学“海星”号UVMS

    Figure  13.  "Starfish" UVMS of Dalian Maritime University

  • [1] 邱志明, 马焱, 孟祥尧, 等. 水下无人装备前沿发展趋势与关键技术分析[J]. 水下无人系统学报, 2023, 31(1): 1-9.

    Qiu Zhiming, Ma Yan, Meng Xiangyao, et al. Analysis on the development trend and key technologies of unmanned underwater equipment[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 1-9.
    [2] 张伟, 潘珺, 宫鹏, 等. 面向UUV回收过程的单目视觉导引灯阵跟踪方法[J]. 水下无人系统学报, 2021, 29(4): 435-441.

    Zhang Wei, Pan Jun, Gong Peng, et al. Monocular vision guided lamp array tracking method for the UUV recovery process[J]. Journal of Unmanned Undersea Systems, 2021, 29(4): 435-441.
    [3] 北林团子. 瑞典使用水下无人机 (ROV) 拍摄北溪天然气管道爆炸现场[EB/OL]. (2022-10-18) [2023-4-29]. https://www.bilibili.com/video/BV1Lm4y1P7H6/
    [4] Brantner G, Khatib O. Controlling ocean one: Human–robot collaboration for deep-sea manipulation[J]. Journal of Field Robotics, 2021, 38(1): 28-51.
    [5] 高剑, 张福斌. 无人水下航行器控制系统——建模、算法设计与开发[M]. 西安: 西北工业大学出版社, 2018.
    [6] 孙叶义, 武皓微, 李晔, 等. 智能无人水下航行器水下回收对接技术综述[J]. 哈尔滨工程大学学报, 2019, 40(1): 5-15.

    Sun Yeyi, Wu Haowei, Li Ye, et al. Summary of AUV underwater recycle docking technology[J]. Journal of Harbin Engineering University, 2019, 40(1): 5-15.
    [7] 胡瀚文, 王猛, 程卫平, 等. 水下视觉SLAM的图像滤波除尘与特征增强算法[J]. 机器人, 2023, 45(2): 197-206.

    Hu Hanwen, Wang Meng, Cheng Weiping, et al. An image dust-filtering and feature enhancement algorithm for underwater visual SLAM[J]. Robot, 2023, 45(2): 197-206.
    [8] 郭继昌, 李重仪, 郭春乐, 等. 水下图像增强和复原方法研究进展[J]. 中国图象图形学报, 2017, 22(3): 273-287.

    Guo Jichang, Li Chongyi, Guo Chunle, et al. Research progress of underwater image enhancement and restoration methods[J]. Journal of Image and Graphics, 2017, 22(3): 273-287.
    [9] 奔粤阳, 汤瑞, 戴平安, 等. 基于加权融合的水下视觉图像增强算法[EB/OL]. (2022-9-14)[2023-4-29]. https://doi.org/10.13700/j.bh.1001-5965.2022.0540.

    Ben Yueyang, Tang Rui, Dai Pingan, et al. Image enhancement algorithm for underwater vision based on weighted fusion[EB/OL]. (2022-9-14) [2023-4-29]. https://doi.org/10.13700/j.bh.1001-5965.2022.0540.
    [10] 丛晓峰, 桂杰, 章军. 基于视觉Transformer的多损失融合水下图像增强网络[J]. 智能科学与技术学报, 2022, 4(4): 522-532.

    Cong Xiaofeng, Gui Jie, Zhang Jun. Underwater image enhancement network based on visual transformer with multiple loss functions fusion[J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 522-532.
    [11] Li C Y, Guo C L, Ren W Q, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2020, 29: 4376-4389. doi: 10.1109/TIP.2019.2955241
    [12] Moghimi M K, Mohanna F. Real-time underwater image enhancement: A systematic review[J]. Journal of Real-Time Image Processing, 2021: 1-17.
    [13] 刘皓轩, 林珊玲, 林志贤, 等. 基于GAN的轻量级水下图像增强网络[J]. 液晶与显示, 2023, 38(3): 378-386. doi: 10.37188/CJLCD.2022-0212

    Liu Haoxuan, Lin Shanling, Lin Zhixian, et al. Lightweight underwater image enhancement network based on GAN[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(3): 378-386. doi: 10.37188/CJLCD.2022-0212
    [14] 石丹, 李庆武, 范新南, 等. 基于Contourlet变换和多尺度Rentinex的水下图像增强算法[J]. 激光与光电子学进展, 2010, 47(4): 41-45.

    Shi Dan, Li Qingwu, Fan Xinnan, et al. Underwater image enhancement algorithm based on contourlet transform and nulti-scale Retinex[J]. Laser & Optoelectronics Progress, 2010, 47(4): 41-45.
    [15] 许丽, 陆桂明, 邱贞光. 结合细节信息的自适应Retinex算法水下图像增强[J]. 计算机工程与应用, 2022, 58(11): 224-233.

    Xu Li, Lu Guiming, Qiu Zhenguang. Adaptive Retinex algorithm based on detail selection used in underwater image enhancement[J]. Computer Engineering and Applications, 2022, 58(11): 224-233.
    [16] 张彩珍, 康斌龙, 李颖, 等. 基于差异通道增益及改进Retinex的水下图像增强[J]. 激光与光电子学进展, 2021, 58(14): 156-163.

    Zhang Caizhen, Kang Binlong, Li Ying, et al. Underwater image enhancement based on differential channel gainand improved Retinex[J]. Laser & Optoelectronics Progress, 2021, 58(14): 156-163.
    [17] 金维维, 华臻, 冯巍巍, 等. 基于改进多尺度Retinex的水下图像增强研究[J]. 计算机应用与软件, 2021, 38(9): 239-243, 255.

    Jin Weiwei, Hua Zhen, Feng Weiwei, et al. Research on underwater image enhancement based on improved multi-scale Retinex[J]. Computer Applications and Software, 2021, 38(9): 239-243, 255.
    [18] 田宁, 程莉, 元海文, 等. 基于Retinex模型的水下图像增强方法[J]. 中国科技论文, 2022, 17(11): 1281-1288.

    Tian Ning, Cheng Li, Yuan Haiwen, et al. Underwater image enhancement method based on Retinex model[J]. China Sciencepaper, 2022, 17(11): 1281-1288.
    [19] 杨福豪, 史启超, 蓝方鸣, 等. 基于色彩衰减补偿和Retinex的水下图像增强[J]. 宁波大学学报(理工版), 2020, 33(1): 58-64.
    [20] Cai X W, Jiang N F, Chen W L, et al. CURE-Net: A cascaded deep network for underwater image enhancement[J]. IEEE Journal of Oceanic Engineering, 2024, 49(1): 226-236.
    [21] 李耀, 于腾, 杨国为. 基于BcGAN的水下图像增强方法[J]. 计算机工程与设计, 2022, 43(11): 3195-3201.

    Li Yao, Yu Teng, Yang Guowei. Underwater image enhancement method based on BcGAN[J]. Computer Engineering and Design, 2022, 43(11): 3195-3201.
    [22] 李钰, 杨道勇, 刘玲亚, 等. 利用生成对抗网络实现水下图像增强[J]. 上海交通大学学报, 2022, 56(2): 134-142.

    Li Yu, Yang Daoyong, Liu Lingya, et al. Underwater image enhancement based on generative adversarial networks[J]. Journal of Shanghai Jiaotong University, 2022, 56(2): 134-142.
    [23] 李庆忠, 白文秀, 牛炯. 基于改进CycleGAN的水下图像颜色校正与增强[J]. 自动化学报, 2023, 49(4): 820-829.

    Li Qingzhong, Bai Wenxiu, Niu Jiong. Underwater image color correction and enhancement based on improved Cycle-consistent Generative Adversarial Networks[J]. Acta Automatica Sinica, 2023, 49(4): 820-829.
    [24] 林森, 刘旭. 门控融合对抗网络的水下图像增强[J]. 图学学报, 2021, 42(6): 948-956.

    Lin Sen, Liu Xu. Underwater image enhancement algorithm using gated fusion generative adversarial network[J]. Journal of Graphics, 2021, 42(6): 948-956.
    [25] 李耀, 于腾, 祁少华, 等. 基于CGAN的自适应密集特征融合水下图像增强算法[J]. 微电子学与计算机, 2021, 38(12): 31-38.

    Li Yao, Yu Teng, Qi Shaohua, et al. Adaptived dense feature fusion underwater image enhancement algorithm based on CGAN[J]. Microelectronics & Computer, 2021, 38(12): 31-38.
    [26] 晋玮佩, 郭继昌, 祁清. 基于条件生成对抗网络的水下图像增强[J]. 激光与光电子学进展, 2020, 57(14): 33-44.

    Jin Weipei, Guo Jichang, Qi Qing. Underwater image enhancement based on conditional generative adversarial network[J]. Laser & Optoelectronics Progress, 2020, 57(14): 33-44.
    [27] 林森, 刘世本, 唐延东. 多输入融合对抗网络的水下图像增强[J]. 红外与激光工程, 2020, 49(5): 217-225.

    Lin Sen, Liu Shiben, Tang Yandong. Multi-input fusion adversarial network for underwater image enhancement[J]. Infrared and Laser Engineering, 2020, 49(5): 217-225.
    [28] 方明, 刘小晗, 付飞蚺. 基于注意力的多尺度水下图像增强网络[J]. 电子与信息学报, 2021, 43(12): 3513-3521.

    Fang Ming, Liu Xiaohan, Fu Feiran. Multi-scale underwater image enhancement network based on attention mechanism[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3513-3521.
    [29] 肖鹏, 王红茹. 一种用于局部低照度水下图像的自适应增强方法[J]. 激光杂志, 2022, 43(4): 114-119.

    Xiao Peng, Wang Hongru. An adaptive enhancement method for underwater images with local low illumination[J]. Laser Journal, 2022, 43(4): 114-119.
    [30] Shi Y L, Gao Z R, Li S. Real-time detection algorithm of marine organisms based on improved YOLOv4-Tiny[J]. IEEE Access, 2022, 10: 131361-131373. doi: 10.1109/ACCESS.2022.3226886
    [31] Moghimi M K, Mohanna F. Reliable object recognition using deep transfer learning for marine transportation systems with underwater surveillance[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(2): 2515-2524.
    [32] Sobolev A S, Chernyi S G, Krivoguz D O, et al. Convolution neural network for identification of underwater objects[C]//2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). Saint Petersburg, Russian: IEEE, 2022: 455-458.
    [33] Tian M J, Li X L, Kong S H, et al. A modified YOLOv4 detection method for a vision-based underwater garbage cleaning robot[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(8): 1217-1228.
    [34] Zhang J, Peng X H, Zhang G Y. Using improved YOLOX for underwater object recognition[C]//2022 5th International Conference on Pattern Recognition and Artificial Intelligence(PRAI). Chengdu, China: IEEE, 2022: 388-393.
    [35] Jian M W, Liu X Y, Luo H J, et al. Underwater image processing and analysis: A review[J]. Signal Processing: Image Communication, 2021, 91: 116088. doi: 10.1016/j.image.2020.116088
    [36] Zhou J Y, Xu T, Guo W T, et al. Underwater occlusion object recognition with fusion of significant environmental features[J]. Journal of Electronic Imaging, 2022, 31(2): 023016.
    [37] Rusli M A, Sari S, Taujuddin N S A M, et al. Contrast enhanced object recognition (CLAHE_YOLOv3) technique for clear and medium level turbidity lake underwater images[J]. Evolution in Electrical and Electronic Engineering, 2022, 3(2): 8-14.
    [38] 陆地, 陈伟, 魏庆宇. 基于多深度对抗网络的ROV水下目标检测[J]. 计算机时代, 2023(4): 5-10.

    Lu Di, Chen Wei, Wei Qingyu. Underwater image enhancement based on multi-scale adversarial network[J]. Computer Era, 2023(4): 5-10.
    [39] Ma Z W, Li H J, Wang Z H, et al. An underwater image semantic segmentation method focusing on boundaries and a real underwater scene semantic segmentation dataset[J/OL]. ArXivPreprint(2021-08-26)[2023-6-20]. https://arxiv.org/abs/2108.11727.
    [40] 王非, 王欣宇, 周景春, 等. 一种基于YOLOv3的水下声呐图像目标检测方法[J]. 电子与信息学报, 2022, 44(10): 3419-3426.

    Wang Fei, Wang Xinyu, Zhou Jingchun, et al. An underwater object detection method for sonar image based on YOLOv3 model[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3419-3426.
    [41] Ghosh S, Ray R, Vadali S R K, et al. Reliable pose estimation of underwater dock using single camera: a scene invariant approach[J]. Machine Vision and Applications, 2016, 27: 221-236. doi: 10.1007/s00138-015-0736-4
    [42] Lwin K N, Mukada N, Myint M, et al. Visual docking against bubble noise with 3-D perception using dual-eye cameras[J]. IEEE Journal of Oceanic Engineering, 2018, 45(1): 247-270.
    [43] Li Y L, Liu W D, Li L, et al. Vision-based target detection and positioning approach for underwater robots[J]. IEEE Photonics Journal, 2022, 15(1): 1-12.
    [44] Sapienza D, Govi E, Aldhaheri S, et al. Model-based underwater 6D pose estimation from RGB[J/OL]. ArXiv Preprint(2023-09-15)[2023-09-20]. https://arxiv.org/abs/2302.06821.
    [45] 张淏酥, 王涛, 苗建明, 等. 水下无人航行器的研究现状与展望[J]. 计算机测量与控制, 2023, 31(2): 1-7, 40.

    Zhang Haosu, Wang Tao, Miao Jianming, et al. Research status and prospect of underwater unmanned vehicles[J]. Computer Measurement & Control, 2023, 31(2): 1-7, 40.
    [46] Ghosh S, Ray R, Vadali S R K, et al. Reliable pose estimation of underwater dock using single camera: A scene invariant approach[J]. Machine Vision & Applications, 2016, 27(2): 221-236.
    [47] 蔡迎波, 李德彪. 基于单目视觉的AUV水下定位方法[J]. 中国惯性技术学报, 2015, 23(4): 489-492.

    Cai Yingbo, Li Debiao. AUV underwater positioning method based on monocular-vision[J]. Journal of Chinese Inertial Technology, 2015, 23(4): 489-492.
    [48] 朱志鹏, 朱志宇. 一种基于双目视觉的水下导引光源检测和测距方法[J]. 水下无人系统学报, 2021, 29(1): 65-73.

    Zhu Zhipeng, Zhu zhiyu. Method for detecting and ranging an underwater guided light source based on binocular vision[J]. Journal of Unmanned Undersea Systems, 2021, 29(1): 65-73.
    [49] 杨翊, 周星群, 胡志强, 等. 基于视觉定位的水下机器人无通信高精度编队技术研究[J]. 数字海洋与水下攻防, 2022, 5(1): 50-58.

    Yang Yi, Zhou Xingqun, Hu Zhiqiang, et al. Research on high-precision unmanned underwater vehicles team formation without communication based on visual positioning technology[J]. Digital Ocean & Underwater Warfare, 2022, 5(1): 50-58.
    [50] Evgeny I V, Margarita V S. Visual image based dynamical positioning using control laws with multipurpose structure - ScienceDirect[J]. IFAC-Papers On Line, 2015, 48(16): 184-189. doi: 10.1016/j.ifacol.2015.10.278
    [51] Vianna M L C. Real-time vision-aided inertial odometry for an AUV[D]. Brest: École Nationale Supérieure de Techniques Avancées Bretagne, 2019.
    [52] Tesei A, Micheli M, Vermeij A, et al. Real-time underwater positioning and navigation of an AUV in deep waters[C]//2018 OCEANS-MTS/IEEE Kobe Techno-Ocean (OTO). Kobe: IEEE, 2018: 1-7.
    [53] Ferrera M, Moras J, Trouve-Peloux P, et al. Real-time monocular visual odometry for turbid and dynamic underwater environments[J]. Sensors, 2019, 19(3): 687. doi: 10.3390/s19030687
    [54] Nishida Y, Sonoda T, Yasukawa S, et al. Underwater platform for intelligent robotics and its application in two visual tracking systems[J]. Journal of Robotics and Mechatronics, 2018, 30(2): 238-247. doi: 10.20965/jrm.2018.p0238
    [55] Gao J, Proctor A, Bradley C. Adaptive neural network visual servoing control for dynamic positioning of underwater vehicles[J]. Neurocomputing, 2015, 167: 604-613. doi: 10.1016/j.neucom.2015.04.028
    [56] Gao J, Proctor A, Shi Y, et al. Hierarchical model predictive image-based visual servoing of underwater vehicles with adaptive neural network dynamic control[J]. IEEE Transactions on Cybernetics, 2015, 40(10): 2323-2334.
    [57] Gao J, Wu P, Yang B, et al. Adaptive neural network control for visual servoing of underwater vehicles with pose estimation[J]. Journal of Marine Science and Technology, 2017, 22(3): 470-478. doi: 10.1007/s00773-016-0426-6
    [58] Figueiredo A B, Ferreira B M, Matos A C. Vision-based localization and positioning of an AUV[C]//Oceans 2016. Shanghai, China: IEEE, 2016: 1-7.
    [59] 杨家铭, 潘悦, 王强, 等. 水下弱目标跟踪的深度学习方法研究[J]. 兵工学报, 2024, 45(2): 385-394.

    Yang Jiaming, Pan Yue, Wang Qiang, et al. Research on deep learning method of underwater weak target tracking[J]. Acta Armamentarii, 2024, 45(2): 385-394.
    [60] 韩泽凯, 朱兴华, 韩晓军, 等. 基于卷积神经网络目标跟踪的AUV回收视觉导引算法[J]. 水下无人系统学报, 2022, 30(6): 801-808.

    Han Zekai, Zhu Xinghua, Han Xiaojun, et al. Visual guidance algorithm for AUV recovery based on CNN object tracking[J]. Journal of Unmanned Undersea Systems, 2022, 30(6): 801-808.
    [61] Sun C Y, Wan Z L, Hai H, et al. Intelligent target visual tracking and control strategy for open frame underwater vehicles[J]. Robotica, 2021, 39(10): 1791-1805. doi: 10.1017/S0263574720001502
    [62] Gao J, Wu P, Li T, et al. Optimization-based model reference adaptive control for dynamic positioning of a fully actuated underwater vehicle[J]. Nonlinear Dynamics, 2017, 87(4): 1-13.
    [63] Gao J, An X M, Proctor A, et al. Sliding mode adaptive neural network control for hybrid visual servoing of underwater vehicles[J]. Ocean Engineering, 2017, 142: 666-675.
    [64] Liu J, Yan W, Gao J, et al. Hybrid vision/force control for underwater vehicles landing on unknown surfaces[J]. Ocean Engineering, 2022, 253(1): 111233.
    [65] Myint M, Yonemori K, Yanou A, et al. Visual servoing for underwater vehicle using dual-eyes evolutionary real-time pose tracking[J]. Journal of Robotics and Mechatronics, 2016, 28(4): 543-558. doi: 10.20965/jrm.2016.p0543
    [66] Kang H J, Cho G R, Kim M, et al. Mission management technique for multi-sensor-based AUV docking[J]. Journal of Ocean Engineering and Technology, 2022, 36(3): 181-193. doi: 10.26748/KSOE.2022.001
    [67] Yazdani A M, Sammut K, Yakimenko O, et al. A survey of underwater docking guidance systems[J]. Robotics and Autonomous systems, 2020, 124: 103382. doi: 10.1016/j.robot.2019.103382
    [68] Ye L, Jiang Y Q, Cao J, et al. AUV docking experiments based on vision positioning using two cameras[J]. Ocean Engineering, 2015, 110: 163-173. doi: 10.1016/j.oceaneng.2015.10.015
    [69] 周船, 郝颖明, 吴清潇, 等. 基于约束运动水下机器人视觉悬停研究[J]. 仪器仪表学报, 2006(S3): 1840-1843.

    Zhou Chuan, Hao Yingming, Wu Qingxiao, el al. Visual station keeping based on constrained motion for underwater robot[J]. Chinese Journal of Scientific Instrument, 2006(S3): 1840-1843.
    [70] Yahya M F , Arshad M R . Position-based visual servoing for underwater docking of an autonomous underwater vehicle[C]//2016 IEEE International Conference on Underwater System Technology: Theory and Applications (USYS). Penang, Malaysia: IEEE, 2017.
    [71] Huang H, Bian X Y, Cai F C, et al. A review on visual servoing for underwater vehicle manipulation systems automatic control and case study[J]. Ocean Engineering, 2022, 260: 112065. doi: 10.1016/j.oceaneng.2022.112065
    [72] Liu S, Xu H, Lin Y, et al. Visual navigation for recovering an AUV by another AUV in shallow water[J]. Sensors, 2019, 19(8): 1889. doi: 10.3390/s19081889
    [73] Singh P, Gregson E, Ross J, et al. Vision-based AUV docking to an underway dock using convolutional neural net-works[C]//2020 IEEE/OES Autonomous Underwater Vehicles Symposium. St. Johns, Canada: IEEE, 2020:1-6.
    [74] Wang T L, Zhao Q C, Yang C J. Visual navigation and docking for a planar type AUV docking and charging system[J]. Ocean Engineering, 2021, 224: 108744. doi: 10.1016/j.oceaneng.2021.108744
    [75] Ren R Z, Zhang L C, Liu L, et al. Two AUVs guidance method for self-reconfiguration mission based on monocular vision[J]. IEEE Sensors Journal, 2021, 21(8): 10082-10090. doi: 10.1109/JSEN.2020.3042306
    [76] Robert S, Brett W, McBride L, et al. Docking Control System for a 54-cm-Diameter (21-in) AUV[J]. IEEE Journal of Oceanic Engineering, 2009, 33(4): 550-562.
    [77] Wirtz M, Hildebrandt M. IceShuttle Teredo: An ice-penetrating robotic system to transport an exploration AUV into the ocean of Jupiter’s moon Europa[C]//67th International Astronautical Congress. Guadalajara, Mexico: ICA, 2016: 26-30.
    [78] Li B, Page B, Hoffman J, et al. Rendezvous planning for multiple AUVs with mobile charging stations in dynamic currents[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1653-1660. doi: 10.1109/LRA.2019.2896899
    [79] Zhang Y X, Gao J, Chen Y M, et al. Adaptive neural network control for visual docking of an autonomous underwater vehicle using command filtered backstepping[J]. International Journal of Robust and Nonlinear Control, 2022, 32(8): 4716-4738. doi: 10.1002/rnc.6051
    [80] 张涛, 李德骏, 彭时林, 等. 基于视觉导引与旋转接驳的自主水下航行器末端入坞研究[J]. 机械工程学报, 2018, 54(20): 81-88. doi: 10.3901/JME.2018.20.081

    Zhang Tao, Li Dejun, Peng Shilin, et al. Research on terminal docking of autonomous underwater vehicle based on visual guidance and rotational docking station[J]. Journal of Mechanical Engineering, 2018, 54(20): 81-88. doi: 10.3901/JME.2018.20.081
    [81] 青岛市民网. 海洋试点国家实验室: 水下光学导引成功实现AUV对接[EB/OL]. (2019-06-22)[2023-4-27]. https://www.dailyqd.com/epaper/html/2019-07/03/content_254093.htm.
    [82] 谢争明, 曾庆军, 朱志宇, 等. AUV自主对接回收动力定位控制系统设计与实现[J]. 软件导刊, 2021, 20(10): 169-173.

    Xie Zhengming, Zeng Qingjun, Zhu Zhiyu, et al. Design and implementation of AUV autonomous docking recovery dynamic positioning control system[J]. Software Guide, 2021, 20(10): 169-173.
    [83] Kim T W, Marani G, Yuh J. Underwater vehicle manipulators[M]. Maryland:Springer Handbook of Ocean Engineering, 2016: 407-422.
    [84] Zhang W X, Xu H C,Ding X L, et al. Design and dynamic analysis of an underwater manipulator[C]//Proceedings of the 2015 Chinese lntelligent Automation Conference. Fuzhou, China: CIAC, 2015: 339-409
    [85] Cheng W, Zhou H Y, Liu G Q. Summary of control algorithm for underwater robot[C]//2020 5th International Conference on Mechanical, Control and Computer Engineering. Harbin, China: ICMCCE , 2020: 759-762.
    [86] 王尧尧. 自治水下运载器—机械手系统协调控制研究[D]. 杭州: 浙江大学, 2016.
    [87] 肖治琥. 深水机械手动力学特性及自主作业研究[D]. 武汉: 华中科技大学, 2011.
    [88] 常宗瑜, 张扬, 郑方圆, 等. 水下机器人-机械手系统研究进展: 结构、建模与控制[J]. 机械工程学报, 2020, 56(19): 53-69. doi: 10.3901/JME.2020.19.053

    Chang Zongyu, Zhang Yang, Zheng Fangyuan, et al. Research progress of underwater vehicle-manipulator systems: Configuration, modeling and control[J]. Journal of Mechanical Engineering, 2020, 56(19): 53-69. doi: 10.3901/JME.2020.19.053
    [89] 香港科技大学. 科大水底机械人大赛向多元背景的年青人推动「STEAM教育」 [EB/OL].(2017-05-08)[2024-3-18]. https://hkust.edu.hk/zh-hans/news/stem-education/hkust-underwater-robot-competition-promotes-steam-education-youngsters-wide.
    [90] Ribas D, Palomeras N, Ridao P, et al. Girona 500 AUV: From survey to intervention[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(1): 46-53. doi: 10.1109/TMECH.2011.2174065
    [91] Barbalata C, Dunnigan M W, Petillot Y. Position/force operational space control for underwater manipulation[J]. Robotics and Autonomous Systems, 2018, 100: 150-159. doi: 10.1016/j.robot.2017.11.004
    [92] 大连海事新闻网. 我校在2020年全国水下机器人大赛中喜获佳绩[EB/OL]. (2020-09-24)[2023-4-27]. https://news.dlmu.edu.cn/info/1021/16998.htm.
    [93] 上海交通大学水下工程研究所. 上海交通大学教授朱继懋揭秘“海龙”号海底机器人 [EB/OL]. (2011-10-25)[2023-4-27]. https://underwater.sjtu.edu.cn/info/4446/11778.htm.
    [94] 纪辉, 兰宇, 武子为, 等. 面向水下作业的水液压机械手研究与展望[J]. 机械工程学报, 2023, 59(4): 283-294. doi: 10.3901/JME.2023.04.283

    Ji Hui, Lan Yu, Wu Ziwei, et al. Research progress and prospect of water hydraulic manipulator for underwater operation[J]. Journal of Mechanical Engineering, 2023, 59(4): 283-294. doi: 10.3901/JME.2023.04.283
    [95] 杨妍, 刘志杰, 韩江涛, 等. 软体机械臂的驱动方式、建模与控制研究进展[J]. 工程科学学报, 2022, 44(12): 2124-2137.

    Yang Yan, Liu Zhijie, Han Jiangtao, et al. Overview of actuators, modeling, and control methods for soft manipulators[J]. Chinese Journal of Engineering, 2022, 44(12): 2124-2137.
    [96] Chen X Q, Zhang X, Huang Y Y, et al. A review of soft manipulator research, applications, and opportunities[J]. Journal of Field Robotics, 2021, 39(3): 281-311.
    [97] Jin K, Choi H S, Nguyen N D, et al. Simulation and experimental validation for dynamic stability of underwater vehicle-manipulator system[C]//Oceans 2017-Anchorage. Anchorage, USA: Oceans, 2017: 1-5.
    [98] 羊波, 王琨, 马祥祥, 等. 多智能体强化学习的机械臂运动控制决策研究[J]. 计算机工程与应用, 2023, 59(6): 318-325.

    Yang Bo, Wang Kun, Mang Xiangxiang, et al. Research on motion control method of manipulator based on reinforcement learning[J]. Computer Engineering and Applications, 2023, 59(6): 318-325.
    [99] Gao J, Liang X M, Chen Y M, et al. Hierarchical image-based visual serving of underwater vehicle manipulator systems based on model predictive control and active disturbance rejection control[J]. Ocean Engineering, 2021, 229: 108814. doi: 10.1016/j.oceaneng.2021.108814
    [100] 张子扬. 基于深度强化学习的水下机械臂抓取研究[D]. 合肥: 中国科学技术大学, 2020.
    [101] 李煊. 基于双目视觉的水下目标图像处理与定位技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
    [102] Zhang Z Y, Cong W, Zhang Q F, et al. Research on autonomous grasping control of underwater manipulator based on visual servo[C]//2019 Chinese Automation Congress. Hangzhou, China: IEEE, 2020: 2904-2910.
    [103] Yu W, Wang S, Wei Q P, et al. Development of an underwater manipulator and its free-floating autonomous operation[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(2): 815-824. doi: 10.1109/TMECH.2015.2494068
    [104] Zheng Z H, Xie J R, Tao S, et al. A novel remote control method oriented to underwater maninulators[C]//2021 IEEE International Conference on Mechatronics and Automation(ICMA). Takamatsu, Japan: IEEE, 2021: 843-848.
    [105] Wen Y Q, Gao J, Song Y X, et al. Motion planning for image-based visual servoing of an underwater vehicle-manipulator system in task-priority frameworks[C]//2022 IEEE 9th International Conference on Underwater System Technology: Theory and Applications(USYS). Kuala Lumpur, Malaysia: IEEE, 2022: 1-5.
    [106] Dai Y, Yu S H. Design of an indirect adaptive controller for the trajectory tracking of UVMS[J]. Ocean Engineering, 2018, 151: 234-245. doi: 10.1016/j.oceaneng.2017.12.070
    [107] Ma R C, Wang Y, Wang S, et al. Sample-observed soft actor-critic learning for path following of a biomimetic underwater vehicle[J]. IEEE Transactions on Automation Science and Engineering, 2023: 1-10.
    [108] Yu W, Cai M X, Wang S, et al. Development and control of an underwater vehicle-manipulator system propelled by flexible flippers for grasping marine organisms[J]. IEEE Transactions on Industrial Electronics, 2021, 69(4): 3898-3908.
    [109] Li H F, Xu J, Yu J Z. Discrete event-triggered fault-tolerant control of underwater vehicles based on takagi–sugeno fuzzy model[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 53(3): 1841-1851.
    [110] Moon J, Bae S H, Cashmore M. Meta reinforcement learning based underwater manipulator control[C]//2021 21st International Conference on Control, Automation and Systems(ICCAS). Jeju, Korea: IEEE, 2021: 1473-1476.
    [111] Li Y F, Gao J, Wang X X, et al. Depth camera based remote three-dimensional reconstruction using incremental point cloud compression[J]. Computers and Electrical Engineering, 2022, 99: 107767. doi: 10.1016/j.compeleceng.2022.107767
  • 加载中
图(13)
计量
  • 文章访问数:  493
  • HTML全文浏览量:  96
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-19
  • 修回日期:  2023-07-03
  • 录用日期:  2023-08-17
  • 网络出版日期:  2023-12-18

目录

    /

    返回文章
    返回
    服务号
    订阅号