[1] |
Shao G, Li Y. Numerical simulation and analysis of electromagnetic fields induced by a moving ship based on a three-layer geoelectric model[J]. Journal of Ocean University of China, 2020, 19(6): 83-90.
|
[2] |
张岳, 胡祥云, 韩波. 我国轴频电场研究现状[J]. 地球物理学进展, 2022, 37(3): 1342-1351. doi: 10.6038/pg2022FF0278Zhang Yue, Hu Xiangyun, Han Bo. Research status of shaft-rate electric field in China[J]. Progress in Geophysics, 2022, 37(3): 1342-1351. doi: 10.6038/pg2022FF0278
|
[3] |
卢新城, 龚沈光, 刘胜道, 等. 舰船极低频电场的产生机理及其防护[J]. 海军工程大学学报, 2003, 15(6): 70-74. doi: 10.3969/j.issn.1009-3486.2003.06.018Lu Xincheng, Gong Shenguang, Liu Shengdao, et al. Generation mechanism of ship’s ELFE and its protection[J]. Journal of Naval University of Engineering, 2003, 15(6): 70-74. doi: 10.3969/j.issn.1009-3486.2003.06.018
|
[4] |
胡鹏, 贾亦卓, 龚沈光. 基于1.5维谱的船舶轴频电场信号实时检测[J]. 海军工程大学学报, 2012, 24(2): 33-37. doi: 10.3969/j.issn.1009-3486.2012.02.008Hu Peng, Jia Yizhuo, Gong Shenguang. Real-time detection of ship shaft-rate electric field signal based on 1.5-dimension spectrum[J]. Journal of Naval University of Engineering, 2012, 24(2): 33-37. doi: 10.3969/j.issn.1009-3486.2012.02.008
|
[5] |
李松, 石敏, 杜鑫. 舰船轴频电场数据的采集与处理研究[J]. 舰船科学技术, 2015, 37(12): 100-103. doi: 10.3404/j.issn.1672-7649.2015.12.020Li Song, Shi Min, Du Xin. Data acquisition and processing for the shaft-rate electric field of a ship[J]. Ship Science and Technology, 2015, 37(12): 100-103. doi: 10.3404/j.issn.1672-7649.2015.12.020
|
[6] |
徐震寰, 李予国, 罗鸣. 船舶轴频电磁场信号的海底测量及其特性分析[J]. 哈尔滨工程大学学报, 2018, 39(4): 652-657. doi: 10.11990/jheu.201612066Xu Zhenhuan, Li Yuguo, Luo Ming. Seabed survey and property analysis of ship’s shaft-rate electromagnetic signal[J]. Journal of Harbin Engineering University, 2018, 39(4): 652-657. doi: 10.11990/jheu.201612066
|
[7] |
赵文春, 姜润翔, 喻鹏, 等. 基于轴频电场线谱特征的目标检测及识别[J]. 兵工学报, 2020, 41(6): 1165-1171. doi: 10.3969/j.issn.1000-1093.2020.06.013Zhao Wenchun, Jiang Runxiang, Yu Peng, et al. Detection and identification of ship shaft-rate electric field based on line-spectrum characteristics[J]. Acta Armamentarii, 2020, 41(6): 1165-1171. doi: 10.3969/j.issn.1000-1093.2020.06.013
|
[8] |
包中华, 于仕财, 龚沈光. 基于小波包分解和滑动功率谱的舰船轴频电场信号检测[J]. 海军航空工程学院学报, 2012, 27(3): 257-262.Bao Zhonghua, Yu Shicai, Gong Shenguang. Detection of ship shaft-rate electric field signals based on wavelet packet decomposition and sliding PSD[J]. Journal of Naval Aeronautical and Astronautical University, 2012, 27(3): 257-262.
|
[9] |
贾亦卓, 姜润翔, 龚沈光. 基于小波尺度相关的船舶轴频电场检测方法[J]. 华中科技大学学报(自然科学版), 2013, 41(3): 25-29. doi: 10.13245/j.hust.2013.03.008Jia Yizhuo, Jiang Runxiang, Gong Shenguang. Detection method of ship shaftrate electric field signal using scale correlation in wavelet domain[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2013, 41(3): 25-29. doi: 10.13245/j.hust.2013.03.008
|
[10] |
贾亦卓, 姜润翔, 龚沈光. 基于小波模极大值的船舶轴频电场检测算法研究[J]. 兵工学报, 2013b, 34(5): 579-584.Jia Yizhuo, Jiang Runxiang, Gong Shenguang. Research on wavelet modulus maximum-based detection algorithm of ship’s shaft-rate electric field[J]. Acta Armamentarii, 2013b, 34(5): 579-584.
|
[11] |
贾亦卓, 姜润翔, 龚沈光. 基于小波模极大值能量的船舶轴频电场检测[J]. 电子学报, 2014, 42(3): 592-596. doi: 10.3969/j.issn.0372-2112.2014.03.026Jia Yizhuo, Jiang Runxiang, Gong Shenguang. Detection of ship shaft-rate electric field signal based on wavelet modulus maximum power[J]. Acta Electronica Sinica, 2014, 42(3): 592-596. doi: 10.3969/j.issn.0372-2112.2014.03.026
|
[12] |
马育锋, 龚沈光, 姜润翔, 等. 基于小波变换的目标信号检测方法[J]. 数据采集与处理, 2009, 24(6): 789-791. doi: 10.3969/j.issn.1004-9037.2009.06.017Ma Yufeng, Gong Shenguang, Jiang Runxiang, et al. Detection method for targe signal based on wavelet transform[J]. Journal of Data Acquisition & Processing, 2009, 24(6): 789-791. doi: 10.3969/j.issn.1004-9037.2009.06.017
|
[13] |
程锐, 姜润翔, 龚沈光. 基于EMD和4阶累积量的船舶轴频电场线谱提取[J]. 舰船科学技术, 2016, 38(1): 94-98. doi: 10.3404/j.issn.1672-7649.2016.1.020Cheng Rui, Jiang Runxiang, Gong Shenguang. Extraction of line spectrum of the ship shaft-rate electric field based on EMD and fourth-order cumulan[J]. Ship Science and Technology, 2016, 38(1): 94-98. doi: 10.3404/j.issn.1672-7649.2016.1.020
|
[14] |
吴亮, 赵哲, 苏建业, 等. 基于Hilbert-Huang变换的轴频电场信号检测方法[J]. 舰船电子工程, 2019, 39(4): 138-142. doi: 10.3969/j.issn.1672-9730.2019.04.031Wu Liang, Zhao Zhe, Su Jianye, et al. Detection of the shaft rate electric field based on the Hilbert-Huang transform[J]. Ship Electronic Engineering, 2019, 39(4): 138-142. doi: 10.3969/j.issn.1672-9730.2019.04.031
|
[15] |
Qian T, Wang Y, Dang P. Adaptive decomposition into mono-components[J]. Advances in Adaptive Data Analysis, 2009, 1(4): 703-709. doi: 10.1142/S1793536909000278
|
[16] |
Qian T, Zhang L, Li Z. Algorithm of adaptive fourier decomposition[J]. IEEE Transactions on Signal Processing, 2011, 59(12): 5899-5906. doi: 10.1109/TSP.2011.2168520
|
[17] |
Mai W, Dang P, Zhang L, et al. Consecutive minimum phase expansion of physically realizable signals with applications[J]. Mathematical Methods in the Applied Sciences, 2016, 39(1): 62-72. doi: 10.1002/mma.3460
|
[18] |
Tan C, Zhang L, Wu H. A novel blaschke unwinding adaptive-Fourier-decomposition-based signal compression algorithm with application on ECG signals[J]. IEEE Journal of Biomedical and Health Informatics, 2018, 23(2): 672-682.
|
[19] |
王赛飞, 方勇, 王军华. 利用自适应傅里叶分解的非平稳无线信道的时频表示[J]. 信号处理, 2018, 34(6): 749-755. doi: 10.16798/j.issn.1003-0530.2018.06.014Wang Saifei, Fang Yong, Wang Junhua. Time-Frequency representation for non-stationary wireless channel using adaptive Fourier decomposition[J]. Journal of Signal Processing, 2018, 34(6): 749-755. doi: 10.16798/j.issn.1003-0530.2018.06.014
|
[20] |
郑近德, 潘海洋, 程军圣, 等. 基于自适应经验傅里叶分解的机械故障诊断方法[J]. 机械工程学报, 2020, 56(9): 125-136. doi: 10.3901/JME.2020.09.125Zheng Jinde, Pan Haiyang, Cheng Junsheng, et al. Adaptive empirical Fourier decomposition based mechanical fault diagnoise method[J]. Journal of mechanical engineering, 2020, 56(9): 125-136. doi: 10.3901/JME.2020.09.125
|