• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于RBF神经网络补偿的ROV运动控制算法

张帅军 刘卫东 李乐 柳靖彬 郭利伟 徐景明

张帅军, 刘卫东, 李乐, 等. 基于RBF神经网络补偿的ROV运动控制算法[J]. 水下无人系统学报, 2024, 32(2): 311-319 doi: 10.11993/j.issn.2096-3920.2023-0033
引用本文: 张帅军, 刘卫东, 李乐, 等. 基于RBF神经网络补偿的ROV运动控制算法[J]. 水下无人系统学报, 2024, 32(2): 311-319 doi: 10.11993/j.issn.2096-3920.2023-0033
ZHANG Shuaijun, LIU Weidong, LI Le, LIU Jingbin, GUO Liwei, XU Jingming. ROV Motion Control Algorithm Based on RBF Neural Network Compensation[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 311-319. doi: 10.11993/j.issn.2096-3920.2023-0033
Citation: ZHANG Shuaijun, LIU Weidong, LI Le, LIU Jingbin, GUO Liwei, XU Jingming. ROV Motion Control Algorithm Based on RBF Neural Network Compensation[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 311-319. doi: 10.11993/j.issn.2096-3920.2023-0033

基于RBF神经网络补偿的ROV运动控制算法

doi: 10.11993/j.issn.2096-3920.2023-0033
基金项目: 国家自然科学基金(61903304); 中央高校基本科研业务费项目(3102020HHZY030010); “111”引智计划项目(B18041.0).
详细信息
    作者简介:

    张帅军(1999-), 男, 在读硕士, 主要研究方向为水下航行器运动控制

  • 中图分类号: TJ630.33; U675.91

ROV Motion Control Algorithm Based on RBF Neural Network Compensation

  • 摘要: 针对作业型遥控水下航行器(ROV)在模型参数不确定和外部环境干扰下的运动控制问题, 提出了一种基于径向基函数(RBF)神经网络的自适应双环滑模控制策略。首先, 对于ROV外环位置控制采用改进趋近律的积分滑模控制方法, 对于ROV内环速度控制采用指数趋近律的积分滑模控制方法; 其次, 为进一步改善滑模控制的抖振问题, 引入双曲正切函数作为滑模切换项; 然后, 利用RBF神经网络控制技术对ROV模型的不确定参数和外部扰动进行估计与补偿; 最后, 利用李雅普诺夫稳定性理论证明了整个闭环系统的稳定性, 并对作业型ROV的运动控制进行了数值仿真。仿真结果验证了所设计的控制器可以实现ROV航行的精确控制, 并能够有效抑制模型不确定参数和外部扰动对ROV运动的影响。

     

  • 图  1  ROV控制算法框图

    Figure  1.  Block diagram of ROV control algorithm

    图  2  RBF神经网络结构

    Figure  2.  Structure of RBF neural network

    图  3  ROV位置和航向跟踪曲线

    Figure  3.  Curves of ROV position and heading tracking

    图  4  ROV速度跟踪曲线

    Figure  4.  Curves of ROV speed tracking

    图  5  扰动实际值和估计值曲线

    Figure  5.  Curves of disturbance actual values and estimated values

    图  6  RBF-DISMC控制方法下推进器推力曲线图

    Figure  6.  Thrust curve of thruster under RBF-DISMC method

    图  7  CSMC控制方法下推进器推力曲线图

    Figure  7.  Thrust Curve of Thruster under CSMC Control Method

    表  1  控制算法仿真性能比较

    Table  1.   Comparison of simulation performance of control algorithms

    t′
    性能参数CSMCDSMCRBF-DISMC
    $ {t_x} $/s86.928.228.0
    $ {t_y} $/s67.651.147.9
    $ {t_z} $/s119.457.649.0
    $ {t_\psi } $/s47.836.029.6
    $ {{{M}}_{{\text{MAE}}}} $
    $ {x_m} $/m0.108 60.071 20.057 6
    $ {y_m} $/m0.075 50.122 60.054 1
    $ {z_m} $/m0.217 20.186 00.163 5
    $ {\psi _m} $/(°)$0.003\;2$$0.038\;0$$0.002\;7$
    $ {R_{{\text{RMSE}}}} $
    $ {x_r} $/m0.225 90.172 60.162 8
    $ {y_r} $/m0.133 80.170 30.115 4
    $ {z_r} $/m0.404 10.353 60.350 6
    $ {\psi _r} $/(°)$0.006\;7$$0.042\;3$$0.006\;6$
    下载: 导出CSV
  • [1] Jiang Z, Lu B, Wang, B, et al. A prototype design and sea trials of an 11 000 m autonomous and remotely-operated vehicle dream chaser[J]. Journal of Marine Science & Engineering, 2022, 10(6): 812.
    [2] Sahoo A, Dwivedy S K, Robi P S. Advancements in the field of autonomous underwater vehicle[J]. Ocean Engineering, 2019, 181(1): 145-160.
    [3] Muthugala M, Samarakoon S, Elara M R. Toward energy-efficient online complete coverage path planning of a ship hull maintenance robot based on glasius bio-inspired neural network[J]. Expert Systems with Application, 2022, 187: 115940. doi: 10.1016/j.eswa.2021.115940
    [4] Song C, Cui W. Review of underwater ship hull cleaning technologies[J]. Journal of Marine Science & Application, 2020, 19(3): 415-429.
    [5] Sveinung J O, Herman B A, Walter C, et al. Robust adaptive backstepping DP control of ROVs[J]. Control Engineering Practice, 2022, 127: 105282. doi: 10.1016/j.conengprac.2022.105282
    [6] Tran H N, Pham T N N, Choi S H. Robust depth control of a hybrid autonomous underwater vehicle with propeller torque’s effect and model uncertainty[J]. Ocean Engineering, 2021, 220: 108257. doi: 10.1016/j.oceaneng.2020.108257
    [7] Zan Y, Qiu T, Yuan L, et al. Autonomous remotely operated vehicle return control in a narrow underwater environment[J]. CAAI Transactions on Intelligent Systems, 2022, 17(4): 744-751.
    [8] Long C, Hu M, Qin X, et al. Hierarchical trajectory tracking control for ROVs subject to disturbances and parametric uncertainties[J]. Ocean Engineering, 2022, 266: 112733. doi: 10.1016/j.oceaneng.2022.112733
    [9] Zhou H, Cao J, Yao B, et al. Hierarchical NMPC-ISMC of active heave motion compensation system for TMS-ROV recovery[J]. Ocean Engineering, 2021, 239: 109834. doi: 10.1016/j.oceaneng.2021.109834
    [10] Zhu D, Zhang H, Liu C. Tracking controller based on model prediction control for remotely operated vehicle for thruster fault[J]. Journal of Marine Engineering & Technology, 2022, 27(2): 840-855.
    [11] Chen H, Tang G, Huang Y, et al. Adaptive model-parameter-free nonsingular fixed-time sliding mode control for underwater cleaning vehicle[J]. Ocean Engineering, 2022, 262: 112239. doi: 10.1016/j.oceaneng.2022.112239
    [12] Yang M, Sheng Z, Yin G, et al. A recurrent neural network based fuzzy sliding mode control for 4-DOF ROV movements[J]. Ocean Engineering, 2022, 256: 111509. doi: 10.1016/j.oceaneng.2022.111509
    [13] Li M, Yu C, Zhang X, et al. Fuzzy adaptive trajectory tracking control of work-class ROVs considering thruster dynamics[J]. Ocean Engineering, 2023, 267: 113232. doi: 10.1016/j.oceaneng.2022.113232
    [14] Lamraoui H C, Qidan Z. Path following control of fully-actuated autonomous underwater vehicle in presence of fast-varying disturbances[J]. Applied Ocean Research, 2019, 86: 40-46. doi: 10.1016/j.apor.2019.02.015
    [15] Zhang Z, Liu B, Wang L. Autonomous underwater vehicle depth control based on an improved active disturbance rejection controller[J]. International Journal of Advanced Robotic Systems, 2019, 16(6): 39-48.
    [16] Joe H, Kim M, Yu S C. Second-order sliding-mode controller for autonomous underwater vehicle in the presence of unknown disturbances[J]. Nonlinear Dyn, 2014, 78: 183-196. doi: 10.1007/s11071-014-1431-0
    [17] Munoz-Vazquez A J, Ramirez-Rodriguez H, Parra-Vega V, et al. Fractional sliding mode control of underwater ROVs subject to non-differentiable disturbances[J]. International Journal of Control Automation and Systems, 2017, 15(3): 1314-1321. doi: 10.1007/s12555-015-0210-0
    [18] Qiao L, Zhang W. Adaptive second-order fast nonsingular terminal sliding mode tracking control for fully actuated autonomous underwater vehicles[J]. Ocean Engineering, 2018, 44: 363-385.
    [19] Xu J, Wang M, Qiao L. Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles[J]. Ocean Engineering, 2015, 105: 54-63. doi: 10.1016/j.oceaneng.2015.06.022
    [20] Huang B, Yang Q. Double-loop sliding mode controller with a novel switching term for the trajectory tracking of work-class ROVs[J]. Ocean Engineering, 2019, 178: 80-94. doi: 10.1016/j.oceaneng.2019.02.043
    [21] Yan Y, Yu S. Sliding mode tracking control of autonomous underwater vehicles with the effect of quantization[J]. Ocean Engineering, 2018, 151: 322-328. doi: 10.1016/j.oceaneng.2018.01.034
    [22] Garcia-Valdovinos L G, Fonseca-Navarro F, Aizpuru-Zinkunegi J, et al. Neuro-sliding control for underwater ROV’s subject to unknown disturbances[J]. Sensors, 2019, 19: 2943. doi: 10.3390/s19132943
    [23] Ding Z, Wang H, Sun Y, et al. Adaptive prescribed performance second-order sliding mode tracking control of autonomous underwater vehicle using neural network-based disturbance observer[J]. Ocean Engineering, 2022, 260: 111939. doi: 10.1016/j.oceaneng.2022.111939
    [24] Patre B M, Londhe P S, Waghmare L M, et al. Disturbance estimator based nonsingular fast fuzzy terminal sliding mode control of an autonomous underwater vehicle[J]. Ocean Engineering, 2018, 159(1): 372-387.
    [25] Han L, Tang G, Cheng M, et al. Adaptive nonsingular fast terminal sliding mode tracking control for an underwater vehicle-manipulator system with extended state observer[J]. Journal of Marine Science & Engineering, 2021, 9(5): 501.
    [26] Shtessel Y, Taleb M, Plestan F. A novel adaptive-gain supertwisting sliding mode controller: Methodology and application[J]. Automatica, 2012, 48: 759-769. doi: 10.1016/j.automatica.2012.02.024
    [27] 朱康武, 顾临怡. 作业型遥控水下运载器的多变量Backstepping鲁棒控制[J]. 控制理论与应用, 2011, 28(10): 1441-1446.
    [28] 范士波. 深海作业型ROV水动力试验及运动控制技术研究 [D]. 上海: 上海交通大学, 2013.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  294
  • HTML全文浏览量:  145
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-06
  • 修回日期:  2023-05-17
  • 录用日期:  2023-06-14
  • 网络出版日期:  2024-01-12

目录

    /

    返回文章
    返回
    服务号
    订阅号