Real - Time Detection and Communication System for Underwater Acoustic Gliders and Their Offshore Experimental
-
摘要: 针对水下声学滑翔机在执行水下观探测任务过程中, 需等待当前剖面滑翔结束上浮至水面进行信息交互, 无法实时回传数据信息的问题,文中提出一种水下声学滑翔机探测通信系统, 利用水声通信技术将水下声学滑翔机探测到的数据信息发送给波浪滑翔器, 其作为通信中继可将数据信息透明转发至岸基中心, 从而实现近似实时的探测通信数据传输。文中介绍了水下声学滑翔机探测通信系统的结构组成和信息传输链路, 着重介绍了水下声学滑翔机的探测通信青岛外海试验情况, 并对试验数据进行处理分析。试验验证了水下声学滑翔机探测通信系统的正确性和可行性, 为后续国内水下无人平台集群协作及编队组网应用提供参考。Abstract: While performing underwater observation and detection, the underwater acoustic glider needs to finish the current profile glide to float to the surface for information exchange and thus fails to realize real-time data information return. In this paper, a detection and communication system for underwater acoustic gliders was proposed. The underwater acoustic communication technology was used to send the data information detected by the underwater acoustic glider to the wave glider. As a communication relay, the wave glider can transparently forward the data to the shore-based center, so as to realize the approximate real-time detection and communication data transmission. This paper introduced the structure, composition, and information transmission link of the detection and communication system for underwater acoustic gliders, emphatically discussed;the detection and communication test of underwater acoustic gliders in sea areas near Qingdao, and analyzed the test data. The test verifies the correctness and feasibility of the detection and communication system for underwater acoustic gliders and provides a reference for the subsequent application of Chinese underwater unmanned platform cluster cooperation and formation networking.
-
表 1 水下声学滑翔机发送数据与岸基中心接收数据对比
Table 1. Comparison of data sent by the underwater acoustic glider and received by the shore-based center
水下声学滑翔机发送端 岸基中心接收端 传输时延差/min 发送时刻 声源方位角/(°) 接收时刻 声源方位角/(°) 09:01:45 342.35 09:04 342.350 3 09:03:00 337.16 09:05 337.155 2 09:05:54 323.29 09:20 323.292 14 11:36:38 138.74 11:54 138.736 18 12:22:12 231.72 12:24 231.724 2 12:28:52 187.85 12:33 187.850 5 12:24:56 210.53 12:34 210.533 10 12:33:27 146.95 12:36 146.950 3 12:33:27 146.95 12:36 146.950 3 12:41:48 103.29 12:46 103.293 5 12:41:48 103.29 12:46 103.293 5 12:48:30 55.13 12:53 55.1333 5 13:01:19 5.62 13:02 5.61538 1 13:15:50 320.45 13:19 320.455 4 13:27:31 287.03 13:34 287.036 7 -
[1] 沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.Shen Xinrui, Wang Yanhui, Yang Shaoqiong, et al. Development of underwater gliders: An overview and prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 89-106. [2] 程雪梅. 水下滑翔机研究进展及关键技术[J]. 鱼雷技术, 2009, 17(6): 1-6.Cheng Xuemei. Development and key technologies of autonomous underwater glider[J]. Torpedo Technology, 2009, 17(6): 1-6. [3] Chen B, Pompili D. Team formation and steering algorithms for underwater gliders using acoustic communications[J]. Computer Communication, 2012, 35(9): 1017-1028. [4] Bingham B, Kraus N, Howe B, et al. Passive and active acoustics using an autonomous wave glider[J]. Journal of Field Robotics, 2012, 29(6): 911-923. doi: 10.1002/rob.21424 [5] 王超, 孙芹东, 王文龙, 等. 水下目标警戒滑翔机声学系统设计与实现[J]. 声学技术, 2018, 37(5): 84-87.Wang Chao, Sun Qindong, Wang Wenlong, et al. Acoustic system design and implementation for underwater target warning glider[J]. Technical Acoustics, 2018, 37(5): 84-87. [6] 王超, 孙芹东, 兰世全, 等. 水下声学滑翔机目标探测性能南海试验分析[J]. 声学技术, 2018, 37(6): 149-150.Wang Chao, Sun Qindong, Lan Shiquan, et al. Underwater acoustic glider target detection performance trial analysis in the South China Sea[J]. Technical Acoustics, 2018, 37(6): 149-150. [7] O"Reilly T C, Kieft B, Chaffey M. Communications relay and autonomous tracking applications for wave glider[C]//IEEE Oceans 2015. Genova, Italy: IEEE, 2015. [8] 孙芹东, 兰世全, 王超, 等. 水下声学滑翔机研究进展及关键技术[J]. 水下无人系统学报, 2020, 28(1): 10-17.Sun Qindong, Lan Shiquan, Wang Chao, et al. Key technologies of underwater acoustic glider a review[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 10-17. [9] Furuichi N, Hibiya T, Niwa Y. Bispectral analysis of energy transfer within the two-dimensional oceanic internal wave field[J]. Journal of Physical Oceanography, 2005, 35(11): 2104-2109. doi: 10.1175/JPO2816.1 [10] Sitaba A I, Trilaksono B R, Hidayat E M I, et al. Communication system and visualization of sensory data and HILs in autonomous underwater glider[C]//International Conference on Electrical Engineering & Informatics. Langkawi, Malaysia: IEEE, 2017. [11] Sun Q D, Zhou H K. An acoustic sea glider for deep-sea noise profiling using an acoustic vector sensor[J]. Polish Maritime Research, 2022, 29(1): 57-62. doi: 10.2478/pomr-2022-0006 [12] 马璐, 温梦华, 乔钢, 等. 无人水下航行器声通信系统设计与应用[J]. 水下无人系统学报, 2018, 26(5): 449-455.Ma Lu, Wen Menghua, Qiao Gang, et al. Design and application of acoustic communication system for unmanned undersea vehicle[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 449-455. [13] 徐立军, 鄢社锋, 曾迪, 等. 全海深高速水声通信机设计与试验[J]. 信号处理, 2019, 35(9): 1505-1512.Xu Lijun, Yan Shefeng, Zeng Di, et al. Design of full-depth high rate underwater communication modem[J]. Journal of Signal Processing, 2019, 35(9): 1505-1512. [14] 张锦灿, 王志欣, 王大宇, 等. 跨介质通信系统链路设计[C]//中国声学学会水声学分会2019年学术会议论文集. 南京: 中国声学学会水声学分会, 2019. [15] 王亭亭, 张南南, 岳才谦, 等. 基于水声通信的AUV组网与协同导航[J]. 水下无人系统学报, 2021, 29(4): 400-406.Wang Tingting, Zhang Nannan, Yue Caiqian, et al. AUV networking and cooperative navigation based on underwater acoustic communication[J]. Journal of Unmanned Undersea Systems, 2021, 29(4): 400-406. [16] 廖煜雷, 李晔, 刘涛, 等. 波浪滑翔器技术的回顾与展望[J]. 哈尔滨工程大学学报, 2016, 37(9): 1227-1236.Liao Yulei, Li Ye, Liu Tao, et al. Unmanned wave glider technology:State of the art and perspective[J]. Journal of Harbin Engineering University, 2016, 37(9): 1227-1236. [17] 孙秀军, 王雷, 桑宏强. “黑珍珠”波浪滑翔器南海台风观测应用[J]. 水下无人系统学报, 2019, 27(5): 562-529.Sun Xiujun, Wang Lei, Sang Hongqiang, et al. Application of wave glider “Black Pearl” to typhoon observation in South China Sea[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 562-529. [18] Busquets-Mataix J, Busquets-Mataix J V, Busquets-Mataix D, et al. Hybrid glider Alba 14 with laser-acoustic data transfer as a low-cost independent instrumentation data-mule[C]//Oceans Conference. Aberdeen, United Kingdom: Marine Unmanned Vehicles Moving Lab. 2017.