• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下声学滑翔机实时探测通信系统及其近海试验

田德艳 张小川 张文清 孙芹东 王超

田德艳, 张小川, 张文清, 等. 水下声学滑翔机实时探测通信系统及其近海试验[J]. 水下无人系统学报, 2024, 32(1): 18-24 doi: 10.11993/j.issn.2096-3920.2023-0020
引用本文: 田德艳, 张小川, 张文清, 等. 水下声学滑翔机实时探测通信系统及其近海试验[J]. 水下无人系统学报, 2024, 32(1): 18-24 doi: 10.11993/j.issn.2096-3920.2023-0020
TIAN Deyan, ZHANG Xiaochuan, ZHANG Wenqing, SUN Qindong, WANG Chao. Real - Time Detection and Communication System for Underwater Acoustic Gliders and Their Offshore Experimental[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 18-24. doi: 10.11993/j.issn.2096-3920.2023-0020
Citation: TIAN Deyan, ZHANG Xiaochuan, ZHANG Wenqing, SUN Qindong, WANG Chao. Real - Time Detection and Communication System for Underwater Acoustic Gliders and Their Offshore Experimental[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 18-24. doi: 10.11993/j.issn.2096-3920.2023-0020

水下声学滑翔机实时探测通信系统及其近海试验

doi: 10.11993/j.issn.2096-3920.2023-0020
详细信息
    作者简介:

    田德艳(1989-), 女, 硕士, 工程师, 主要研究方向为水声通信技术

  • 中图分类号: TJ630.34; U674

Real - Time Detection and Communication System for Underwater Acoustic Gliders and Their Offshore Experimental

  • 摘要: 针对水下声学滑翔机在执行水下观探测任务过程中, 需等待当前剖面滑翔结束上浮至水面进行信息交互, 无法实时回传数据信息的问题,文中提出一种水下声学滑翔机探测通信系统, 利用水声通信技术将水下声学滑翔机探测到的数据信息发送给波浪滑翔器, 其作为通信中继可将数据信息透明转发至岸基中心, 从而实现近似实时的探测通信数据传输。文中介绍了水下声学滑翔机探测通信系统的结构组成和信息传输链路, 着重介绍了水下声学滑翔机的探测通信青岛外海试验情况, 并对试验数据进行处理分析。试验验证了水下声学滑翔机探测通信系统的正确性和可行性, 为后续国内水下无人平台集群协作及编队组网应用提供参考。

     

  • 图  1  水下声学滑翔机探测通信系统结构示意图

    Figure  1.  Structure of detection and communcation system for underwater acoustic glider

    图  2  集成水声通信机的水下声学滑翔机

    Figure  2.  Underwater acoustic glider with integrated acoustic communication machine

    图  3  集成水声通信机的波浪能滑翔器

    Figure  3.  Wave glider with integrated acoustic communication machine

    图  4  系统信息交互流程图

    Figure  4.  Flow chart of system information interaction

    图  5  试验海域

    Figure  5.  Test sea area

    图  6  滑翔机布放过程

    Figure  6.  The deployment process of glider

    图  7  波浪滑翔器主控连接声通机

    Figure  7.  Main control of wave glider connected with sound machine

    图  8  试验测试流程

    Figure  8.  Test procedure

    图  9  试验海域声速剖面及600 m通信本征声线传播

    Figure  9.  The sound velocity profile of the test sea area and the intrinsic sound ray propagation of 600 m communication

    图  10  水下声学滑翔机发送数据与岸基中心接收数据传输时延差和传输方位角差

    Figure  10.  The difference in data transmission delay and transmission azimuth between the transmitting end of an underwater acoustic glider and the shore based center

    图  11  水下声学滑翔机姿态信息

    Figure  11.  The attitude information of underwater acoustic glider

    表  1  水下声学滑翔机发送数据与岸基中心接收数据对比

    Table  1.   Comparison of data sent by the underwater acoustic glider and received by the shore-based center

    水下声学滑翔机发送端岸基中心接收端传输时延差/min
    发送时刻声源方位角/(°)接收时刻声源方位角/(°)
    09:01:45342.3509:04342.3503
    09:03:00337.1609:05337.1552
    09:05:54323.2909:20323.29214
    11:36:38138.7411:54138.73618
    12:22:12231.7212:24231.7242
    12:28:52187.8512:33187.8505
    12:24:56210.5312:34210.53310
    12:33:27146.9512:36146.9503
    12:33:27146.9512:36146.9503
    12:41:48103.2912:46103.2935
    12:41:48103.2912:46103.2935
    12:48:3055.1312:5355.13335
    13:01:195.6213:025.615381
    13:15:50320.4513:19320.4554
    13:27:31287.0313:34287.0367
    下载: 导出CSV
  • [1] 沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.

    Shen Xinrui, Wang Yanhui, Yang Shaoqiong, et al. Development of underwater gliders: An overview and prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 89-106.
    [2] 程雪梅. 水下滑翔机研究进展及关键技术[J]. 鱼雷技术, 2009, 17(6): 1-6.

    Cheng Xuemei. Development and key technologies of autonomous underwater glider[J]. Torpedo Technology, 2009, 17(6): 1-6.
    [3] Chen B, Pompili D. Team formation and steering algorithms for underwater gliders using acoustic communications[J]. Computer Communication, 2012, 35(9): 1017-1028.
    [4] Bingham B, Kraus N, Howe B, et al. Passive and active acoustics using an autonomous wave glider[J]. Journal of Field Robotics, 2012, 29(6): 911-923. doi: 10.1002/rob.21424
    [5] 王超, 孙芹东, 王文龙, 等. 水下目标警戒滑翔机声学系统设计与实现[J]. 声学技术, 2018, 37(5): 84-87.

    Wang Chao, Sun Qindong, Wang Wenlong, et al. Acoustic system design and implementation for underwater target warning glider[J]. Technical Acoustics, 2018, 37(5): 84-87.
    [6] 王超, 孙芹东, 兰世全, 等. 水下声学滑翔机目标探测性能南海试验分析[J]. 声学技术, 2018, 37(6): 149-150.

    Wang Chao, Sun Qindong, Lan Shiquan, et al. Underwater acoustic glider target detection performance trial analysis in the South China Sea[J]. Technical Acoustics, 2018, 37(6): 149-150.
    [7] O"Reilly T C, Kieft B, Chaffey M. Communications relay and autonomous tracking applications for wave glider[C]//IEEE Oceans 2015. Genova, Italy: IEEE, 2015.
    [8] 孙芹东, 兰世全, 王超, 等. 水下声学滑翔机研究进展及关键技术[J]. 水下无人系统学报, 2020, 28(1): 10-17.

    Sun Qindong, Lan Shiquan, Wang Chao, et al. Key technologies of underwater acoustic glider a review[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 10-17.
    [9] Furuichi N, Hibiya T, Niwa Y. Bispectral analysis of energy transfer within the two-dimensional oceanic internal wave field[J]. Journal of Physical Oceanography, 2005, 35(11): 2104-2109. doi: 10.1175/JPO2816.1
    [10] Sitaba A I, Trilaksono B R, Hidayat E M I, et al. Communication system and visualization of sensory data and HILs in autonomous underwater glider[C]//International Conference on Electrical Engineering & Informatics. Langkawi, Malaysia: IEEE, 2017.
    [11] Sun Q D, Zhou H K. An acoustic sea glider for deep-sea noise profiling using an acoustic vector sensor[J]. Polish Maritime Research, 2022, 29(1): 57-62. doi: 10.2478/pomr-2022-0006
    [12] 马璐, 温梦华, 乔钢, 等. 无人水下航行器声通信系统设计与应用[J]. 水下无人系统学报, 2018, 26(5): 449-455.

    Ma Lu, Wen Menghua, Qiao Gang, et al. Design and application of acoustic communication system for unmanned undersea vehicle[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 449-455.
    [13] 徐立军, 鄢社锋, 曾迪, 等. 全海深高速水声通信机设计与试验[J]. 信号处理, 2019, 35(9): 1505-1512.

    Xu Lijun, Yan Shefeng, Zeng Di, et al. Design of full-depth high rate underwater communication modem[J]. Journal of Signal Processing, 2019, 35(9): 1505-1512.
    [14] 张锦灿, 王志欣, 王大宇, 等. 跨介质通信系统链路设计[C]//中国声学学会水声学分会2019年学术会议论文集. 南京: 中国声学学会水声学分会, 2019.
    [15] 王亭亭, 张南南, 岳才谦, 等. 基于水声通信的AUV组网与协同导航[J]. 水下无人系统学报, 2021, 29(4): 400-406.

    Wang Tingting, Zhang Nannan, Yue Caiqian, et al. AUV networking and cooperative navigation based on underwater acoustic communication[J]. Journal of Unmanned Undersea Systems, 2021, 29(4): 400-406.
    [16] 廖煜雷, 李晔, 刘涛, 等. 波浪滑翔器技术的回顾与展望[J]. 哈尔滨工程大学学报, 2016, 37(9): 1227-1236.

    Liao Yulei, Li Ye, Liu Tao, et al. Unmanned wave glider technology:State of the art and perspective[J]. Journal of Harbin Engineering University, 2016, 37(9): 1227-1236.
    [17] 孙秀军, 王雷, 桑宏强. “黑珍珠”波浪滑翔器南海台风观测应用[J]. 水下无人系统学报, 2019, 27(5): 562-529.

    Sun Xiujun, Wang Lei, Sang Hongqiang, et al. Application of wave glider “Black Pearl” to typhoon observation in South China Sea[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 562-529.
    [18] Busquets-Mataix J, Busquets-Mataix J V, Busquets-Mataix D, et al. Hybrid glider Alba 14 with laser-acoustic data transfer as a low-cost independent instrumentation data-mule[C]//Oceans Conference. Aberdeen, United Kingdom: Marine Unmanned Vehicles Moving Lab. 2017.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  916
  • HTML全文浏览量:  56
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-06
  • 修回日期:  2023-03-25
  • 录用日期:  2023-05-22
  • 网络出版日期:  2024-01-11

目录

    /

    返回文章
    返回
    服务号
    订阅号