Design and Comparison of SiC MOSFET inverter for Underwater High-Power and High-Speed Motor
-
摘要: 随着“深远海”及高机动性、隐蔽性应用目标的提出, 未来水下航行器动力系统需具备更高的转速、功率密度和效率。文中针对传统Si基功率器件在水下高速大功率电机应用中, 由于开关性能限制, 存在电机换相周期内斩波次数不够, 给电机带来较大的转矩脉动和损耗的问题, 首先对功率器件损耗进行分析, 在PSpice中建立仿真模型, 对比了不同开关频率及温度下SiC金氧半场效晶体管(MOSFET)和绝缘栅双极晶体管(IGBT)损耗, 并在Simulink中对比了不同开关频率下电机转矩脉动。利用SiC功率器件开关频率高、开关损耗低等优点, 将SiC MOSFET应用于水下航行器大功率高速电机逆变器模块, 对软硬件进行设计, 并与IGBT逆变器进行效率对比, 同时分析了SiC MOSFET在高频下对电机转矩脉动的影响, 为SiC MOSFET在水下航行器中应用提供有益借鉴。
-
关键词:
- 水下航行器 /
- SiC金氧半场效晶体管 /
- 逆变器
Abstract: The proposal of deep and high sea and the application target of high maneuverability and concealment means that the future power system of underwater vehicles should have higher speed, power density, and efficiency. In the application of underwater high-speed and high-power motors, traditional Si-based power devices face the limitation of switching performance, and there are insufficient chopping times in the commutation cycle of the motor, which brings large torque ripple and loss to the motor. Therefore, in this paper, the power device loss was analyzed first. A simulation model was established in PSpice to compare the loss of SiC metal-oxide-semiconductor field-effect transistor(MOSFET) and insulated gate bipolar transistor(IGBT) at different switching frequencies and temperatures, and the motor torque ripple at different switching frequencies was compared in Simulink. The SiC power device had the advantages of high switching frequency and low switching loss, and then the SiC MOSFET was applied to the high-power and high-speed motor inverter module of underwater vehicles. The software and hardware of the inverter module were designed and compared with the IGBT inverter in terms of efficiency. At the same time, the influence of SiC MOSFET on the motor torque ripple at high frequency was analyzed, which provides a useful reference for SiC MOSFET application in underwater vehicles. -
表 1 驱动板参数
Table 1. Drive plate parameters
驱动板型号 单路输出
功率/W最大驱动
频率/kHz峰值驱动
电流/A2FSD0420-EDC 4 60 −15/20 ED0438E 5 20 27 表 2 HVTR2812S/HB电源模块参数
Table 2. Power module parameters of HVTR2812S/HB
输入电压/V 输出电压/V 输出功率/W 纹波
/mV效率/% 工作频率/kHz 输出电压
精度/%15~50 12 40 50 87 400 1 表 3 SiC MOSFET逆变器电机功率及效率数据
Table 3. SiC MOSFET inverter motor power and efficiency data
输入电压
/V输入电流
/A输入功率
/kW输出功率
/kW效率
/%373.7 228.9 81.8 78.3 96 374.5 231.5 81.9 78.7 96 374.7 232.0 83.2 78.8 95 375.3 232.0 83.3 79.2 95 375.4 232.5 83.5 79.4 95 375.4 236.3 83.5 80 96 375.4 236.3 85.0 80.6 95 表 4 IGBT逆变器电机功率及效率数据
Table 4. IGBT inverter motor power and efficiency data
输入电压
/V输入电流
/A输入功率
/kW输出功率
/kW效率
/%370.4 223.3 73.4 67.8 92 372.7 232.9 83.1 75.6 91 372.9 231.3 82.5 75.9 92 372.5 227.6 80.8 74.6 92 372.9 227.6 81.1 74.7 92 374.2 238.9 85.7 75.4 91 374.2 238.7 85.6 77.4 90 -
[1] 宋保维, 潘光, 张立川, 等. 自主水下航行器发展趋势及关键技术[J]. 中国舰船研究, 2022, 17(5): 27-44.Song Baowei, Pan Guang, Zhang Lichuan, et al. Development trend and key technology of autonomous underwater vehicle[J]. China Ship Research, 2022, 17(5): 27-44. [2] 戴凯奇. 6.6 kW单级三相PFC DC-DC车载充电机设计研究[D]. 杭州: 浙江大学, 2019. [3] 刘学超, 黄建立, 叶春显. 基于新型1200V碳化硅(SiC)MOSFET的三相双向逆变器的研究[J]. 电源学报, 2016, 14(4): 59-65, 81.Liu Xuechao, Huang Jianli, Ye Chunxian. Research on three-phase bidirectional inverter based on new 1200V silicon carbide(SiC) MOSFET[J]. Journal of Power Sources, 2016, 14(4): 59-65, 81. [4] 韩鹏程, 周涛, 何晓琼. 基于新型碳化硅MOSFET三相逆变器研究[J]. 电力电子技术, 2017, 51(9): 39-41.Han Pengcheng, Zhou Tao, He Xiaoqiong. Research on three-phase inverter based on new silicon carbide MOSFET[J]. Power Electronics, 2017, 51(9): 39-41. [5] 苏杭, 姜燕, 刘平, 等. 7.5 kW电动汽车碳化硅逆变器设计[J]. 电源学报, 2019, 17(3): 126-132.Su Hang, Jiang Yan, Liu Ping, et al. Design of silicon carbide inverter for 7.5 kW electric vehicle[J]. Journal of Power Supply, 2019, 17(3): 126-132. [6] 李东, 王喜乐, 李岩, 等. 基于全碳化硅的车辆辅助逆变器应用研究[J]. 电力电子技术, 2020, 54(10): 47-49.Li Dong, Wang Xile, Li Yan, et al. Application research on vehicle auxiliary inverter based on all-silicon carbide[J]. Power Electronics, 2020, 54(10): 47-49. [7] 李凤禄. 基于串入并出结构的地铁列车全碳化硅辅助变流器研究[D]. 北京: 北京交通大学, 2020. [8] 马保慧. 基于Si和SiC器件的逆变器系统性能对比研究[J]. 电气传动, 2017, 47(8): 3-6, 48.Ma Baohui. Comparative study on inverter system performance based on Si and SiC devices[J]. Electric Drive, 2017, 47(8): 3-6, 48. [9] 尹太元, 王跃, 段国朝, 等. 基于零直流电压控制的混合型MMC-HVDC直流短路故障穿越策略[J]. 电工技术学报, 2019, 34(S1): 343-351.Yin Taiyuan, Wang Yue, Duan Guochao, et al. Hybrid MMC-HVDC DC short-circuit fault ride-through strategy based on zero DC voltage control[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 343-351. [10] 栾新宇, 樊波, 张瑞, 等. 基于改进虚拟磁链的储能变流器直接功率控制[J]. 火力与指挥控制, 2018, 43(10): 93-98.Luan Xinyu, Fan Bo, Zhang Rui, et al. Direct power control of energy storage converter based on improved virtual magnetic linkage[J]. Fire Power and Command Control, 2018, 43(10): 93-98.