Implementation and Application of Bellhop Model in Underwater Acoustic Network Simulation
-
摘要: 随着水声技术的发展, 水声网络(UANs)因其在海洋监视、灾害预警和海洋安全等领域的表现而备受关注。水声信道是影响UANs性能的重要因素之一, 其复杂特性直接影响着UANs相关协议的前期设计和评估, 对于协议走向实际应用至关重要。有别于传统理论模型, Bellhop水声信道模型通过跟踪射线计算海洋声场, 提供了一种更准确的获得不同海洋环境下信道特性的方法, 但该方法不能直接用于网络仿真。针对此, 文中在目前主流的网络仿真平台NS3上构建了基于Bellhop的水声信道模型, 将高斯射线模型用于水声网络仿真。对比结果表明, 该模型能够有效仿真声信号在水下的传播特性, 可为实际UANs协议开发提供参考。Abstract: With the development of underwater acoustic technology, underwater acoustic networks(UANs) have attracted much attention due to their performance in marine surveillance, disaster warning, and ocean security. The underwater acoustic channel is a crucial factor affecting the performance of UANs, and its complexity directly affects the pre-design and evaluation of UAN-related protocols, which is crucial to the practical application of protocols. Unlike traditional theoretical models, the Bellhop underwater acoustic channel model provides a more accurate method to obtain channel characteristics under different oceanic environments by calculating their acoustic fields via ray tracing. However, it cannot be directly applied to network simulation. This paper implemented a Bellhop underwater acoustic channel model based on NS3, the current most popular network simulation platform, and applied the Gaussian ray model to UAN simulation. The comparison results show that the model can effectively simulate the underwater propagation characteristics of acoustic signals and provide a reference for practical UAN-related protocol development.
-
Key words:
- underwater acoustic networks /
- channel model /
- Bellhop /
- NS3
-
表 1 网络仿真参数
Table 1. Network simulation parameters
参数 值 海洋环境类型 Munk 网络范围/m2 1 000×1 000 节点数量 15 节点分布 均匀随机分布 源节点深度/m 10 目的节点深度/m 50 信号频率/Hz 15 000 MAC协议 CW(contention window) 协议时隙/s 0.2 CW长度 10~400 数据率/(bit/s) 80 仿真时间/s 2 000 仿真次数 3 -
[1] Shahabudeen S, Motani M, Chitre M. Analysis of a high-performance MAC protocol for underwater acoustic networks[J]. IEEE Journal of Oceanic Engineering, 2014, 39(1): 74-89. doi: 10.1109/JOE.2013.2246741 [2] Chen K, Ma M, Cheng E, et al. A survey on MAC protocols for underwater wireless sensor networks[J]. IEEE Communications Surveys & Tutorials, 2014, 16(3): 1433-1447. [3] Heidemann J, Stojanovic M, Zorzi M. Underwater sensor networks: Applications, advances, and challenges[J]. Philosophical Transactions, 2012, 370(1958): 158-172. [4] Agrawal R, Chitre M, Mahmood A. Design of an address assignment and resolution protocol for underwater networks[C]//IEEE Oceans 2016. Shanghai, China: IEEE, 2016. [5] Su Y, Jin Z. UMMAC: A multichannel MAC protocol for underwater acoustic networks[J]. Journal of Communications & Networks, 2016, 18(1): 75-83. [6] The Office of Naval Research. Ocean acoustics library[EB/OL]. (2022-03-01)[2023-02-20].https://oalib-acoustics.org/. [7] NS-3. NS-3 Network Simulator[EB/OL].(2022-03-01)[2023-02-20]. https://www.nsnam.org/. [8] 李莉, 路晨贺, 王桐, 等. 基于WOSS的NS-Miracle水声信道模拟方法扩展[J]. 声学技术, 2021, 40(1): 21-28.Li Li, Lu Chenhe, Wang Tong, et al. Extension of simulation method for underwater acoustic network channel based on NS-Miracle and WOSS[J]. Technical Acoustics, 2021, 40(1): 21-28. [9] Guerra F, Casari P, Zorzi M. World ocean simulation system(WOSS) a simulation tool for underwater networks with realistic propagation modeling[C]//Proceedings of the Fourth ACM International Workshop on Underwater Networks. Berkeley, California. New York: ACM Press, 2009. [10] 苏毅珊. 认知水声网络MAC机制与关键技术研究[D]. 天津: 天津大学, 2015. [11] Zeng X, Luo Z, Chen F, et al. An NS-3 compatible emulation framework for underwater acoustic network[C]//Proceedings of the Thirteenth ACM International Conference on Underwater Networks & Systems. [S.l.]: ACM, 2018: 1-5. [12] 熊传梁, 王相, 夏青峰, 等. Bellhop模型在拖线阵声呐效能分析中的应用[J]. 数字海洋与水下攻防, 2020, 3(2): 135-139.Xiong Chuanliang, Wang Xiang, Xia Qingfeng, et al. Bellhop model’s application on efficiency analysis of towed line array sonar[J]. Digital Ocean & Underwater Warfare, 2020, 3(2): 135-139. [13] Porter M B, Bucker H P. Gaussian beam tracing for computing ocean acoustic fields[J]. The Journal of the Acoustical Society of America, 1987, 82(4): 1349-1359. doi: 10.1121/1.395269 -