[1] |
Holt M, Heiskell R H. Vortex Motion as Related to Migrated Steam Bubbles from Underwater Nuclear Explosions[R]. Washington, D. C.: Naval Research Laboratory, 1966, 1-15.
|
[2] |
Li T, Zhang A M, Wang S P, et al. Nonlinear Interaction and Coalescence Features of Oscillating Bubble Pairs: Experimental and Numerical Study[J]. Physics of Fluids, 2019, 31(9): 092108. doi: 10.1063/1.5121380
|
[3] |
Akhatov I, Lindau O, Topolnikov A, et al. Collapse and Rebound of a Laser-Induced Cavitation Bubble[J]. Physics of Fluids, 2001, 13(10): 2805-2819. doi: 10.1063/1.1401810
|
[4] |
Turley W D, Lone B, Mance J G, et al. Experimental Observations of Shock-Wave-Induced Bubble Collapse and Hot-Spot Formation in Nitromethane Liquid Explosive[J]. Journal of Applied Physics, 2021, 129(14): 145102. doi: 10.1063/5.0039414
|
[5] |
Zeng B, Chong K L, et al. Periodic Bouncing of a Plasmonic Bubble in a Binary Liquid by Competing Solutal and Thermal Marangoni Forces[J]. Proceedings of the National Academy of Sciences, 2021, 118(23): e2103215118. doi: 10.1073/pnas.2103215118
|
[6] |
孙承纬. 应用爆轰物理[M]. 北京: 国防工业出版社, 2000.
|
[7] |
Kury J W, Honig H C, Lee E L, et al. Metal Acceleration by Chemical Explosive[J]. Journal of Applied Physics, 1965, 36(2): 625-632.
|
[8] |
Guirguis R H. Streamline Dynamics Method for Highly Curved Detonations[C]//Presented at the Tenth Symposium (International) on Detonation. Boston, MA Boston: Office of Naval Research, 1993.
|
[9] |
Guirguis R H. Time-Dependent Equations of State for Aluminized Underwater Explosives[C]//Presented at the Tenth Symposium(Intemational) on Detonation. Boston, MA Boston: Office of Naval Research, 1993.
|
[10] |
Guirguis R H. Relation between Early and Late Energy Release in Non-Ideal Explosives[C]//Proceedings of the 1994 Jannaf Pshs. Monterey, CA: Elsevier, 1995.
|
[11] |
Miller P J, Guirguis R H. Experimental Study and Model Calculations of Metal Combustion in A1/AP Underwater Explosives[C]//Proceedings of the 1992 MRS Symposium. Boston, MA: Elsevier, 1993.
|
[12] |
Guirguis R H. Energy Release in Non-ideal Explosives[J]. AIP Conference Proceedings, 1996, 370(1): 381-384.
|
[13] |
毛致远, 段超伟, 胡宏伟, 等. 水下爆炸威力试验与评价方法综述[J]. 水下无人系统学报, 2022, 30(3): 384-390. doi: 10.11993/j.issn.2096-3920.2022.03.015Mao Zhi-yuan, Duan Chao-wei, Hu Hong-wei, et al. Review of Testing and Evaluation Methods for Underwater Explosion Power[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 384-390. doi: 10.11993/j.issn.2096-3920.2022.03.015
|
[14] |
Jia X, Wang S, Feng C, et al. A Practical Simulation of a Hexanitrohexaazaisowurtzitane(CL-20) Sphere Detonated Underwater with the Taylor Wave Solution and Modified Tait Parameters[J]. Physics of Fluids, 2021, 33(3): 036102. doi: 10.1063/5.0037300
|
[15] |
Sachdev P L. Shock Waves and Explosions[M]. New York: Chapman and Hall/CRC, 2004.
|
[16] |
Jia X, Wang S, Xu J, et al. Nonlinear Characteristics and Corrections of Near-Field Underwater Explosion Shock Waves[J]. Physics of Fluids, 2022, 34(3): 046108.
|
[17] |
Moisson A. Des Explosions Au Sein de L'eau[R]. [S. l.]: Maritime et Coloniale, 1877.
|
[18] |
Audic J. Étude Sur Les Effets Des Explosions Sous-Marines[R].[S. l.]: Rev. Maritime et Coloniale, 1877.
|
[19] |
Abbot H L. Report upon Experiments and Investigations to Develop a System of Submarine Mines for Defending the Harbors of the United States[R]. Washington, D. C.: the U. S. Army, 1881.
|
[20] |
Bertelli T. Studi Comparativi fra Alcune Vibrazioni Meccaniche Artificiali e le Vibrazioni Sismiche[M]//Annali dell’Ufficio Centrale Meteorologico e Geodinamico Italiano X[II], Parte IV. Roma: Tipografia del Senato, 1892: 5-44.
|
[21] |
Armstrong G E. Torpedoes and Torpedo-vessels[R]. London: Bell, 1896.
|
[22] |
Plach F. Die Gepresste Schiesswolle. Eine Abhandlung über die Beurtheilung, Verwendung und Behandlung Dieses Explosiv-Preparates für Torpedo-und Seeminen-Lehrcurse[M]. Pola: E. Schaff, 1891.
|
[23] |
Blochmann R. Die Explosion unter Wasser[J]. Marine-Rundschau, 1898, 9: 197-227.
|
[24] |
Hilliar H W. Experiments on the Pressure Wave Thrown out by Submarine Explosions[R]. [S.l.]: Engl. Dept. of Scientific Research & Experiment, 1919.
|
[25] |
Keys D A. A Piezoelectric Method of Measuring Explosion Pressures[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1921, 42: 473-488. doi: 10.1080/14786442108633788
|
[26] |
Keys D A. The Cathode-Ray Oscillograph and Its Application to the Exact Measurement of Explosion Pressures, Potential Changes in Vacuum Tubes and High Tension Magnetos[J]. Boston: J. Franklin Institute, 1923, 196: 576-591.
|
[27] |
Wood A B. The Cathode Ray Oscillograph[J]. Proceedings of the Physical Society (Lond.), 1922, 35(1): 109-124.
|
[28] |
Ramsauer C. Die Massenbewegung des Wassers bei Unterwasserexplosionen[J]. Annals of Physics, 1923, 72: 265-284.
|
[29] |
Lamb H. On the Early Stages of a Submarine Explosion[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1923, 6(45): 257-265.
|
[30] |
Weinert. Unterwasser Zeitlupen Aufnahmen von Gasblasenschwingungen[R]. Kiel: Berichte der Chemisch-physikalischen Versuchsanstalt der Kriegsmarine, 1941.
|
[31] |
Haack W. Geschoßformen Kleinsten Wellenwiderstandes[R]. Lilienthal: Lilienthal-Gesell. Ber, 1941, 139: 14-29.
|
[32] |
U. S. Navy. A Photographic Study of Small-Scale Underwater Explosions[R]. Montgomery MD: David W. Taylor Model Basin, Confidential Test Rept. , 1941.
|
[33] |
Campbell D C. Motions of a Pulsating Gas Globe under Water-a Photographic Study[R]. Montgomery MD: David W. Taylor Model Basin Rept. , 1943.
|
[34] |
Ewing M, Crary A. Multi Impulses from Underwater Explosions[R]. Massachusetts, the U.S.: Woods Hole Oceanogr, 1941.
|
[35] |
Cole R H. Underwater Explosions[M]. Princeton, New Jersey: Princeton University Press, 1948.
|
[36] |
Office of Naval Research. Underwater Explosion Research, Three Volume-set[R]. Washington, D. C.: Office of Naval Research, 1950.
|
[37] |
Snay H G. Hydrodynamics of Underwater Explosions[C]//In: Symposium on Naval Hydrodynamic. Washington, D. C.: National Academy of Sciences , 1956.
|
[38] |
Hopkinson B. British Ordnance Board Minutes: Report 13565[R]. London, UK: British Ordnance Office, 1915.
|
[39] |
Cranz K J, Eberhard O, Becker K E. Lehrbuch der Ballistik Ergänzungen zum. Band II[M]. Berlin, Germany: Springer, 1926.
|
[40] |
White E P. Effects of Impact and Explosions[R]. Washington, D. C.: NDRC, 1946.
|
[41] |
Kirkwood J G, Bethe H. The Pressure Wave Produced by an Underwater Explosion, Basic Propagation Theory, Part 1[R]. Washington, D. C.: OSRD, 1942.
|
[42] |
Kiciński R, Szturomski B. Pressure Wave Caused by Trinitrotoluene(TNT) Underwater Explosion—Short Review[J]. Applied Sciences, 2020, 10(10): 3433. doi: 10.3390/app10103433
|
[43] |
Zamyshlyaev B V, Yakovlev Y S. Dynamic Loads in Underwater Explosion: AD 757183[R]. Washington, D. C.: Naval Intelligence Support Center, 1973.
|
[44] |
Geers T L, Hunter K S. An Integrated Wave-Effects Model for an Underwater Explosion Bubble[J]. The Journal of the Acoustical Society of America, 2002, 111(4): 1584-1601. doi: 10.1121/1.1458590
|
[45] |
Hunter K S, Geers T L. Pressure and Velocity Fields Produced by an Underwater Explosion[J]. The Journal of the Acoustical Society of America, 2004, 115(4): 1483-1496. doi: 10.1121/1.1648680
|
[46] |
Temperley H N V, Craig J. Calculation from Thermodynamical and Hydrodynamical Considerations of Underwater Shock-waves for Spherical Charges[R]. Washington, D. C.: Department of the Navy, Office of Naval Research, 1950: 347-372.
|
[47] |
Brinkley S R, Kirkwood J G. Theory of the Propagation of Shock Waves[J]. Physical Review, 1947, 71(9): 606. doi: 10.1103/PhysRev.71.606
|
[48] |
Brinkley S R, Kirkwood J G. Theory of the Propagation of Shock Waves from Infinite Cylinders of Explosive[J]. Physical Review, 1947, 72(11): 1109. doi: 10.1103/PhysRev.72.1109
|
[49] |
Best J P. A Generalisation of the Theory of Geometrical Shock Dynamics[J]. Shock Waves, 1992, 2(2): 125. doi: 10.1007/BF01415902
|
[50] |
Best J P. The Dynamics of Underwater Explosions[D]. Wollongong: University of Wollongong, 1991.
|
[51] |
Sachdev P L. On the Theory of Weak Spherical Shocks[J]. Indian Journal of Pure & Applied Mathematics, 1976, 7(11): 1-7.
|
[52] |
Sachdev P L. Shock Waves and Explosions[M]. 1st ed. Florida: Chapman and Hall/CRC, 2004.
|
[53] |
Rogers P H. Weak-shock Solution for Underwater Explosive Shock Waves[J]. Journal of the Acoustical Society of America, 1977, 62(6): 1412-1419. doi: 10.1121/1.381674
|
[54] |
Kedrinskii V K. Hydrodynamics or Explosions[J]. Journal of Applied Mechanics and Technical Physics, 1988, 28(4): 491-515. doi: 10.1007/BF00916731
|
[55] |
Kedrinskii V K. Hydrodynamics of Explosion: Experiments and Models[M]. Berlin Heidelberg: Springer, 2005.
|
[56] |
Arons A B. Underwater Explosion Shock Wave Parameters at Large Distances from the Charge[J]. Journal of the Acoustical Society of America, 1954, 26(3): 343-346. doi: 10.1121/1.1907339
|
[57] |
Chapman N R. Measurement of the Waveform Parameters of Shallow Explosive Charges[J]. The Journal of the Acoustical Society of America, 1985, 78(2): 672-681. doi: 10.1121/1.392436
|
[58] |
Zhang J, Wang S, Jia X, et al. An Improved Kirkwood-Bethe Model for Calculating Near-Field Shockwave Propagation of Underwater Explosions[J]. AIP Advances, 2021, 11(3): 035123. doi: 10.1063/5.0040224
|
[59] |
Penney W G. The Pressure-Time Curve for Underwater Explosions (I)[R]. Washington, D. C.: Department of the Navy, Office of Naval Research, 1950: 273-288.
|
[60] |
Penney W G, Dasgupta H K. The Pressure-Time Curve for Underwater Explosions (II)[R]. Washington, D. C.: Department of the Navy, Office of Naval Research, 1950: 289-300.
|
[61] |
Holt M, Berry F J. The Initial Propagation of Spherical Blast from Certain Explosives[J]. Proceedings of the Royal Society of London, 1954, 224(1157): 236-251.
|
[62] |
Holt M. The Initial Behaviour of a Spherical Explosion. I. Theoretical Analysis[J]. Proceedings of the Royal Society of London, 1956, 234(1196): 89-109.
|
[63] |
Holt M. The Initial Behaviour of a Spherical Explosion. II. Application to PETN Charges in Air and Water[J]. Proceedings of the Royal Society of London, 1956, 234(1196): 110-115.
|
[64] |
Ai D K, Holt M. The Initial Growth of a Spherical Explosion in Sea Water[R]. USA: Defense Technical Information Center, 1957.
|
[65] |
Berger S A, Holt M. Implosive Phase of a Spherical Explosion in Sea Water[J]. The Physics of Fluids, 1962, 5(4): 426. doi: 10.1063/1.1706635
|
[66] |
李晓杰, 杨晨琛, 闫鸿浩, 等. 柱状含铝炸药水下爆炸近场的特征线法研究[J]. 爆炸与冲击, 2019, 39(2): 22-29. doi: 10.11883/bzycj-2017-0412Li Xiao-jie, Yang Chen-chen, Yan Hong-hao, et al. Numerical Study of Near-field Underwater Explosion of Cylindrical Aluminized Explosive by the Method of Characteristics[J]. Explosion and Shock Waves, 2019, 39(2): 22-29. doi: 10.11883/bzycj-2017-0412
|
[67] |
李晓杰, 张程娇, 闫鸿浩, 等. 水下爆炸近场非均熵流的特征线差分解法[J]. 爆炸与冲击, 2012, 32(6): 604-608. doi: 10.3969/j.issn.1001-1455.2012.06.008Li Xiao-jie, Zhang Cheng-jiao, Yan Hong-hao, et al. Difference Method of Characteristics in Isentropic Flow of Underwater Explosion in Near-field Region[J]. Explosion and Shock Waves, 2012, 32(6): 604-608. doi: 10.3969/j.issn.1001-1455.2012.06.008
|
[68] |
Flores J, Holt M. Glimm’s Method Applied to Underwater Explosions[J]. Journal of Computational Physics, 1981, 44(2): 377-387. doi: 10.1016/0021-9991(81)90058-9
|
[69] |
Harten A, Engquist B, Osher S, et al. Uniformly High Order Accurate Non-Oscillatory Schemes III[J]. Comput. Phys., 1987, 71: 231-303. doi: 10.1016/0021-9991(87)90031-3
|
[70] |
Jiang G, Shu C W. Efficient Implementation of Weighted ENO Schemes[J]. Journal of Computational Physics, 1996, 126: 202-228. doi: 10.1006/jcph.1996.0130
|
[71] |
Balsara D S, Shu C W. Monotonicity Preserving Weighted Essentially Non-Oscillatory Schemes with Increasingly High Order of Accuracy[J]. Journal of Computational Physics, 2000, 160: 405-452. doi: 10.1006/jcph.2000.6443
|
[72] |
Zhang S, Jiang S, Shu C. Development of Nonlinear Weighted Compact Schemes with Increasingly Higher Order Accuracy[J]. Journal of Computational Physics, 2008, 227(15): 7294-7321. doi: 10.1016/j.jcp.2008.04.012
|
[73] |
Capdeville G. A Central WENO Scheme for Solving Hyperbolic Conservation Laws on Non-Uniform Meshes[J]. Journal of Computational Physics, 2008, 227(5): 2977-3014. doi: 10.1016/j.jcp.2007.11.029
|
[74] |
刘君, 韩芳, 魏雁昕. 应用维数分裂方法推广MUSCL和WENO格式的若干问题[J]. 航空学报, 2022, 43(3): 133-142. doi: 10.7527/j.issn.1000-6893.2022.3.hkxb202203010Liu Jun, Han Fang, Wei Yan-xin. MUSCL and WENO Schemes Problems Generated by Dimension Splitting Approach[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 133-142. doi: 10.7527/j.issn.1000-6893.2022.3.hkxb202203010
|
[75] |
Wang C, Zhang X, Shu C W, et al. Robust High Order Discontinuous Galerkin Schemes for Two-Dimensional Gaseous Detonations[J]. Journal of Computational Physics, 2012, 231(2): 653-665. doi: 10.1016/j.jcp.2011.10.002
|
[76] |
Tan C, Wang C, Shu C-W, et al. Efficient Implementation of High-Order Inverse Lax-Wendroff Boundary Treatment for Conservation Laws[J]. Journal of Computational Physics, 2012, 231(6): 2510-2527. doi: 10.1016/j.jcp.2011.11.037
|
[77] |
Shima A. Studies on Bubble Dynamics[J]. Shock Waves, 1997, 7(1): 33-42. doi: 10.1007/s001930050060
|
[78] |
Plesset M S. The Dynamics of Cavitation Bubbles[J]. Journal of applied Mechanics, 1949, 16: 277-282. doi: 10.1115/1.4009975
|
[79] |
Besant W H. Hydrostatics and Hydrodynamics[M]. London: Cambridge University Press, 1859.
|
[80] |
Rayleigh L. On the Pressure Developed in a Liquid during the Collapse of a Spherical[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 6(34): 94-98.
|
[81] |
Herring C. Theory of the Pulsations of the Gas Bubble Produced by an Underwater Explosion[R]. Washington, D. C.: Department of the Navy, Office of Naval Research, 1950: 35-130.
|
[82] |
Trilling L. The Collapse and Rebound of a Gas Bubble[J]. Journal of Applied Physics, 1952, 23(1): 14-17. doi: 10.1063/1.1701962
|
[83] |
Gilmore F R. The Growth or Collapse of a Spherical Bubble in a Viscous Compressible Liquid[R]. Pasadena: California Institute of Technology, 1952.
|
[84] |
Keller J B, Kolodner I I. Damping of Underwater Explosion Bubble Oscillation[J]. Journal of Applied Physics, 1956, 27: 1152-1161. doi: 10.1063/1.1722221
|
[85] |
Flynn H G. Cavitation Dynamics. I. A Mathematical Formulation[J]. Acoustical Society of America Journal, 1975, 57(6): 1379-1396. doi: 10.1121/1.380624
|
[86] |
Flynn H G. Cavitation Dynamics: II. Free Pulsations and Models for Cavitation Bubbles[J]. The Journal of the Acoustical Society of America, 1975, 58(6): 1160-1170. doi: 10.1121/1.380799
|
[87] |
Lastman G J, Wentzell R A. Cavitation of a Bubble in an Inviscid Compressible Liquid, with Comparisons to a Viscous Incompressible Liquid[J]. Physics of Fluids, 1979, 22(12): 2259-2266. doi: 10.1063/1.862534
|
[88] |
Cramer E. The Dynamics and Acoustic Emission of Bubbles Driven by a Sound Field[C]//Cavitation and Inhomogeneities in Underwater Acoustics. Berlin, Heidelberg: Springer, 1980: 54-63.
|
[89] |
Rath H J. Free and Forced Oscillations of Spherical Gas Bubbles and Their Translational Motion in a Compressible Fluid[C]//Cavitation and Inhomogeneities in Underwater Acoustics. Berlin, Heidelberg: Springer, 1980: 64-71.
|
[90] |
Keller J B, Miksis M. Bubble Oscillations of Large Amplitude[J]. The Journal of the Acoustical Society of America, 1980, 68(2): 628-633. doi: 10.1121/1.384720
|
[91] |
Prosperetti A, Lezzi A. Bubble Dynamics in a Compressible Liquid. Part 1. First-order Theory[J]. Journal of Fluid Mechanics, 1986, 168: 457-478. doi: 10.1017/S0022112086000460
|
[92] |
Lighthill M J. A Technique for Rendering Approximate Solutions to Physical Problems Uniformly Valid[J]. Phil Mag, 1949, 40(5): 1179-1120.
|
[93] |
Kuo Y H. On the Flow of an Incompressible Viscous Fluid past a Flat Plate at Moderate Reynolds Numbers[J]. J Math and Phys, 1953, 32(1): 83-51.
|
[94] |
Tsien H S. The Poincare-Lighthill-Kuo Method[J]. Advan Appl Math, 1956, 4(2): 281-349.
|
[95] |
Lastman G J, Wentzell R A. Comparison of Five Models of Spherical Bubble Response in an Inviscid Compressible Liquid[J]. The Journal of the Acoustical Society of America, 1981, 69(3): 638-642. doi: 10.1121/1.385580
|
[96] |
Tilmann P M. Nonlinear Sound-Scattering by Small Bubbles[C]//Cavitation and Inhomogeneities in Underwater Acoustics. Berlin, Heidelberg: Springer, 1980: 113-118.
|
[97] |
Tomita Y, Shima A. High-speed Photographic Observations of Laser-Induced Cavitation Bubbles in Water[J]. Acta Acustica United with Acustica, 1990, 71(3): 161-171.
|
[98] |
Tomita Y, Shima A, Sato K. Dynamic Behavior of Two-Laser-Induced Bubbles in Water[J]. Applied Physics Letters, 1990, 57(3): 234-236. doi: 10.1063/1.103726
|
[99] |
Tomita Y, Shima A. On the Behavior of a Spherical Bubble and the Impulse Pressure in a Viscous Compressible Liquid[J]. Bulletin of JSME, 1977, 20(149): 1453-1460. doi: 10.1299/jsme1958.20.1453
|
[100] |
Shima A, Tomita Y. The Behavior of a Spherical Bubble in Mercury/Report 2[J]. Rep. Inst. High Speed Mech, 1979, 19: 39.
|
[101] |
Lezzi A, Prosperetti A. Bubble Dynamics in a Compressible Liquid. Part 2. Second-order Theory[J]. Journal of Fluid Mechanics, 1987, 185: 289-321. doi: 10.1017/S0022112087003185
|
[102] |
Geers T L, Park C K. Optimization of the G&H Bubble Model[J]. Shock and Vibration, 2005, 12(1): 3-8. doi: 10.1155/2005/430767
|
[103] |
Geers T L, Lagumbay R S, Vasilyev O V. Acoustic-Wave Effects in Violent Bubble Collapse[J]. Journal of Applied Physics, 2012, 112(5): 054910. doi: 10.1063/1.4748870
|
[104] |
Wang Q X, Blake J R. Non-spherical Bubble Dynamics in a Compressible Liquid. Part 1. Travelling Acoustic Wave[J]. Journal of Fluid Mechanics, 2010, 659(1): 191-224.
|
[105] |
Wang Q X, Blake J R. Non-spherical Bubble Dynamics in a Compressible Liquid. Part 2. Acoustic Standing Wave[J]. Journal of Fluid Mechanics, 2011, 679(1): 559-581.
|
[106] |
Wang Q X. Non-spherical Bubble Dynamics of Underwater Explosions in a Compressible Fluid[J]. Physics of Fluids, 2013, 25(7): 072104. doi: 10.1063/1.4812659
|
[107] |
Smith W R, Wang Q. Radiative Decay of the Nonlinear Oscillations of an Adiabatic Spherical Bubble at Small Mach Number[J]. Journal of Fluid Mechanics, 2018, 837: 1-18. doi: 10.1017/jfm.2017.658
|
[108] |
Zhang A M, Cui P, Cui J, et al. Experimental Study on Bubble Dynamics Subject to Buoyancy[J]. Journal of Fluid Mechanics, 2015, 776: 137-160. doi: 10.1017/jfm.2015.323
|
[109] |
Zhang A M, Yang W S, Huang C, et al. Numerical Simulation of Column Charge Underwater Explosion Based on SPH and BEM Combination[J]. Computers & Fluids, 2013, 71: 169-178.
|
[110] |
Cui P, Zhang A M, Wang S, et al. Ice Breaking by a Collapsing Bubble[J]. Journal of Fluid Mechanics, 2018, 841: 287-309. doi: 10.1017/jfm.2018.63
|
[111] |
Cui P, Zhang A M, Wang S P, et al. Experimental Investigation of Bubble Dynamics near the Bilge with a Circular Opening[J]. Applied Ocean Research, 2013, 41: 65-75. doi: 10.1016/j.apor.2013.03.002
|
[112] |
Cui P, Zhang A M, Wang S P, et al. Experimental Study on Interaction, Shock Wave Emission and Ice Breaking of Two Collapsing Bubbles[J]. Journal of Fluid Mechanics, 2020, 897(A25): 1-40.
|
[113] |
Xiao W, Zhang A M, Wang S P. Investigation of Bubble Dynamics of Underwater Explosion Based on Improved Compressible Numerical Model[J]. Applied Ocean Research, 2016, 59: 472-482. doi: 10.1016/j.apor.2016.07.007
|
[114] |
Wang P P, Zhang A M, Ming F R, et al. A Novel Non-Reflecting Boundary Condition for Fluid Dynamics Solved by Smoothed Particle Hydrodynamics[J]. Journal of Fluid Mechanics, 2019, 860: 81-114. doi: 10.1017/jfm.2018.852
|
[115] |
Zhang J, Wang S, Jia X, et al. An Engineering Application of Prosperetti and Lezzi Equation to Solve Underwater Explosion Bubbles[J]. Physics of Fluids, 2021, 33(1): 017118. doi: 10.1063/5.0033016
|
[116] |
Wang S, Gui Q, Zhang J, et al. Theoretical and Experimental Study of Bubble Dynamics in Underwater Explosions[J]. Physics of Fluids, 2021, 33(12): 126113. doi: 10.1063/5.0072277
|
[117] |
Hsieh D Y. On the Dynamics of Nonspherical Bubbles[J]. Journal of Basic Engineering, 1972, 94(3): 655-665. doi: 10.1115/1.3425522
|
[118] |
Wang Q X, Yeo K S, Khoo B C, et al. Nonlinear Interaction between Gas Bubble and Free Surface[J]. Computers & Fluids, 1996, 25(7): 607-628.
|
[119] |
Zhang A M, Liu Y L. Improved Three-Dimensional Bubble Dynamics Model Based on Boundary Element Method[J]. Journal of Computational Physics, 2015, 294: 208-223. doi: 10.1016/j.jcp.2015.03.049
|
[120] |
Zhang S, Duncan J, Chahine G. The Final Stage of the Collapse of a Cavitation Bubble near a Rigid Wall[J]. Journal of Fluid Mechanics, 1993, 257: 147-181. doi: 10.1017/S0022112093003027
|
[121] |
Zhang A, Li S, Cui J. Study on Splitting of a Toroidal Bubble near a Rigid Boundary[J]. Physics of Fluids, 2015, 27: 062102. doi: 10.1063/1.4922293
|
[122] |
Han R, Li S, Zhang A M, et al. Modelling for Three Dimensional Coalescence of Two Bubbles[J]. Physics of Fluids, 2016, 28(6): 707-721.
|
[123] |
Benson D J. Computational Methods in Lagrangian and Eulerian Hydrocodes[J]. Computer Methods in Applied Mechanics & Engineering, 1992, 99: 235-394.
|
[124] |
Donea J, Giuliani S, Halleux J P. An Arbitrary Lagrangian-Eulerian Finite Element Method for Transient Dynamic Fluid-Structure Interactions[J]. Computer Methods in Applied Mechanics & Engineering, 1982, 33(1-3): 689-723.
|
[125] |
Hu H H, Patankar N A, Zhu M Y. Direct Numerical Simulations of Fluid-Solid Systems Using the Arbitrary Lagrangian-Eulerian Technique[J]. Journal of Computational Physics, 2001, 169(2): 427-462. doi: 10.1006/jcph.2000.6592
|
[126] |
Noh W F. CEL: A Time-Dependent, Two-Space-Dimensional, Coupled Eulerian-Lagrange Code[R]. Livermore, California: UNT Libraries Government Documents Department, 1963.
|
[127] |
Gang Q, Henke S, Grabe J. Application of a Coupled Eulerian-Lagrangian Approach on Geomechanical Problems Involving Large Deformations[J]. Computers & Geotechnics, 2011, 38(1): 30-39.
|
[128] |
Glimm J, Isaacson E, Marchesin D. Front Tracking for Hyperbolic Systems[J]. Advances in Applied Mathematics, 1981, 2(1): 91-119. doi: 10.1016/0196-8858(81)90040-3
|
[129] |
Glimm J, Klingenberg C, McBryan O. Front Tracking and Two-Dimensional Riemann Problems[J]. Advances in Applied Mathematics, 1985, 6(3): 259-290. doi: 10.1016/0196-8858(85)90014-4
|
[130] |
Chern I L, Glimm J, McBryan O. Front Tracking for Gas Dynamics[J]. Journal of Computational Physics, 1986, 62(1): 83-110. doi: 10.1016/0021-9991(86)90101-4
|
[131] |
Roe P L. A New Approach to Computing Discontinuous Flows of Several Ideal Gases[R]. Erfurt: Canfield Institute of Technology, 1984.
|
[132] |
Larouturou B. How to Preserve the Mass Fraction Positive when Computing Compressible Multi-Component Flows[J]. Journal of Computational Physics, 1991, 95(1): 59-84. doi: 10.1016/0021-9991(91)90253-H
|
[133] |
Hirt C, Nichols B. Volume of Fluid(VOF) Method for the Dynamics of Free Boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. doi: 10.1016/0021-9991(81)90145-5
|
[134] |
Osher S, Sethian J A. Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49. doi: 10.1016/0021-9991(88)90002-2
|
[135] |
Fedkiw R P, Aslam T, Merriman B. A Non-Oscillatory Eulerian Approach to Interfaces in Multimaterial Flows(the Ghost Fluid Method)[J]. Journal of Computational Physics, 1999, 152(2): 457-492. doi: 10.1006/jcph.1999.6236
|
[136] |
Fedkiw R P, Marquina A, Merriman B. An Isobaric Fix for the Overheating Problem in Multimaterial Compressible Flows[J]. Journal of Computational Physics, 1999, 148(2): 545-578. doi: 10.1006/jcph.1998.6129
|
[137] |
Fedkiw R P. Coupling an Eulerian Fluid Calculation to a Lagrangian Solid Calculation with the Ghost Fluid Method[J]. Journal of Computational Physics, 2002, 175(1): 200-224. doi: 10.1006/jcph.2001.6935
|
[138] |
Liu T G, Khoo B C, Yeo K S. Ghost Fluid Method for Strong Shock Impacting on Material Interface[J]. Journal of Computational Physics, 2003, 190(2): 651-681. doi: 10.1016/S0021-9991(03)00301-2
|
[139] |
Hu X Y, Khoo B C. An Interface Interaction Method for Compressible Multifluids[J]. Journal of Computational Physics, 2004, 198(1): 35-64. doi: 10.1016/j.jcp.2003.12.018
|
[140] |
Liu T G, Khoo B C, Wang C W. The Ghost Fluid Method for Compressible Gas-Water Simulation[J]. Journal of Computational Physics, 2005, 204(1): 193-221. doi: 10.1016/j.jcp.2004.10.012
|
[141] |
Liu T G, Khoo B C. The Accuracy of the Modified Ghost Fluid Method for Gas-Gas Riemann Problem[J]. Applied Numerical Mathematics, 2007, 57: 721-733. doi: 10.1016/j.apnum.2006.07.013
|
[142] |
Wang C W, Liu T G, Khoo B C. A Real Ghost Fluid Method for the Simulation of Multimedium Compressible Flow[J]. Siam Journal on Scientific Computing, 2006, 28(1): 278-302. doi: 10.1137/030601363
|
[143] |
Xu L, Feng C, Liu T. Practical Techniques in Ghost Fluid Method for Compressible Multi-Medium Flows[J]. Communications in Computational Physics, 2016, 20(3): 619-659. doi: 10.4208/cicp.190315.290316a
|
[144] |
Liu T G, Khoo B C, Xie W F. The Modified Ghost Fluid Method as Applied to Extreme Fluid-Structure Interaction in the Presence of Cavitation[J]. Commun. Comput. Phys., 2006, 1: 898-919.
|
[145] |
Liu T G, Xie W F, Khoo B C. The Modified Ghost Fluid Method for Coupling of Fluid and Structure Constituted with Hydro-Elasto-Plastic Equation of State[J]. Siam Journal on Scientific Computing, 2007, 30(3): 1105-1130.
|
[146] |
Xu L, Liu T G. Modified Ghost Fluid Method as Applied to Fluid-Plate Interaction[J]. Advances in Applied Mathematics & Mechanics, 2014, 6(1): 24-48.
|
[147] |
Feng Z W, Kaboudian A, Rong J L, et al. The Simulation of Compressible Multifluid Mulit-Solid Interactions Using the Modified Ghost Method[J]. Comput. Fluids, 2017, 154: 12-26. doi: 10.1016/j.compfluid.2017.05.017
|
[148] |
Gao S, Liu T G. 1D Exact Elastic-Perfectly Plastic Solid Riemann Solver and Its Multi-Material Application[J]. Adv. Appl. Math. Mech., 2017, 9(3): 621-650.
|
[149] |
Shi R C, Qu Y G, Batra R C. Numerical Simulation of Underwater Explosion Wave Propagation in Water-Solid-Air/Water System Using Ghost Fluid/Solid Method[J]. Journal of Fluids and Structures, 2019, 90: 354-378. doi: 10.1016/j.jfluidstructs.2019.07.002
|
[150] |
Xu L, Liu T G. Optimal Error Estimation of the Modified Ghost Fluid Method[J]. Commun. Comput. Phys., 2010, 8: 403-426. doi: 10.4208/cicp.110509.271009a
|
[151] |
Xu L, Liu T G. Accuracies and Conservation Errors of Various Ghost Fluid Methods for Multimedium Riemann Problem[J]. J. Comput. Phys., 2011, 230: 4975-90.
|
[152] |
Liu T G, Feng C L, Xu L. Modified Ghost Fluid Method with Acceleration Correction (MGFM/AC)[J]. Journal of Scientific Computing, 2019, 81(1): 1906-44.
|
[153] |
Feng C L, Liu T G, Xu L, et al. Modified Ghost Fluid Method with Axisymmetric Source Correction(MGFM/ASC)[J]. Communications in Computational Physics, 2020, 28: 621-660. doi: 10.4208/cicp.OA-2019-0056
|
[154] |
Wang C, Tang H, Liu T. An Adaptive Ghost Fluid Finite Volume Method for Compressible Gas-Water Simulations[J]. Journal of Computational Physics, 2008, 227(12): 6385-409. doi: 10.1016/j.jcp.2008.03.005
|
[155] |
Kennard E H. Cavitation in an Elastic Liquid[J]. Physical Review, 1943, 63(5-6): 172. doi: 10.1103/PhysRev.63.172
|
[156] |
Kennard E H. Explosive Load on Underwater Structures as Modified by Bulk Cavitation[R]. Washington D C: David Taylor Model Basin, 1943.
|
[157] |
Arons A, Yennie D, Cotter T. Long Range Shock Propagation in Underwater Explosion Phenomena II[M]. Underwater Explosion Compendium, 1949: 107.
|
[158] |
Walker R R, Gordon J D. A Study of the Bulk Cavitation Caused by Underwater Explosions[R]. US: David Taylor Model Basin Portsmouth Va Underwater Explosions Research Div, 1966.
|
[159] |
Gaspin J B, Price R S. The Underpressure Field from Explosions in Water as Modified by Cavitation[R]. Silver Spring: Naval Ordnance Lab White Oak Md, 1972.
|
[160] |
Didoszak J M. Parametric Studies of DDG-81 Ship Shock Trial Simulations[D]. Monterey: Naval Postgraduate School Monterey Ca, 2004.
|
[161] |
Walters A P. Investigation of an Explicitly Modeled Solid Ocean Floor on a Shallow Water UNDEX Event[D]. Monterey: Naval Postgraduate School Monterey Ca, 2011.
|
[162] |
Ahn S H. Investigation of Shallow UNDEX in Littoral Ocean Domain[D]. Monterey: Naval Postgraduate School Monterey Ca, 2014.
|
[163] |
Costanzo F A, Gordon J D. A Solution to the Axisymmetric Bulk Cavitation Problem[R]. Shock and Vibration Bulletin, 1983(53): 33-51.
|
[164] |
Kedrinskii V K. Negative Pressure Profile in Cavitation Zone at Underwater Explosion near Free Surface[J]. Acta Astronautica, 1976, 3(7-8): 623-32. doi: 10.1016/0094-5765(76)90166-1
|
[165] |
Kedrinskii V K. Surface Effects from an Underwater Explosion (Review)[J]. Journal of Applied Mechanics and Technical Physics, 1978(19): 474-491.
|
[166] |
Xie W F, Liu T G, Khoo B C. Application of a One-Fluid Model for Large Scale Homogeneous Unsteady Cavitation: The Modified Schmidt Model[J]. Computers and Fluids, 2006, 35(10): 1177-92. doi: 10.1016/j.compfluid.2005.05.006
|
[167] |
Kleine H, Tepper S, Takehara K, et al. Cavitation Induced by Low-speed Underwater Impact[C]//26th International Symposium on Shock Waves. Berlin Heidelberg: Springer, 2009.
|
[168] |
Cui P, Zhang A M, Wang S P. Small-charge Underwater Explosion Bubble Experiments Under Various Boundary Conditions[J]. Physics of Fluids, 2016(28): 117103.
|
[169] |
余俊, 刘建湖, 盛振新, 等. 水下爆炸引起的近自由面空化机理研究[J]. 水动力学研究与进展A辑, 2022, 37(4): 483-491. doi: 10.16076/j.cnki.cjhd.2022.04.006Yu Jun, Liu Jian-hu, Sheng Zhen-xin, et al. Research on Mechanism of Cavitation near Free Surface Induced by Underwater Explosion[J]. Chinese Journal of Hydrodynamics, 2022, 37(4): 483-491. doi: 10.16076/j.cnki.cjhd.2022.04.006
|
[170] |
Cushing V J. On the Theory Bulk Cavitation[R]. Washington, D. C.: NDRC, 1969.
|
[171] |
Holt M. Final Report on Contact[R]. Virginia: Defense Technical Information Center, 1979.
|
[172] |
John F G, Coarrnor. The Interaction between Explosion and the Ocean Surface[R]. Washington D. C.: NDRC, 1979.
|
[173] |
Britt J R. Linear Theory of Bottom Reflection[R]. Maryland: Naval Ordnance Lab White Oak MD, 1969.
|
[174] |
Britt J R. Bottom Reflection of Underwater Explosion Shock Waves[J]. Computer Program, 1971(7): 110-132.
|
[175] |
孙百连, 顾文彬, 蒋建平, 等. 浅层水中沉底的两个装药爆炸的数值模拟研究[J]. 爆炸与冲击, 2003, 23(5): 460-465. doi: 10.3321/j.issn:1001-1455.2003.05.013Sun Bai-lian, Gu Wen-bin, Jiang Jian-ping, et al. Numerical Simulation of Explosion Shock Wave Interaction in Shallow-Layer Water[J]. Explosion and Shock Waves, 2003, 23(5): 460-465. doi: 10.3321/j.issn:1001-1455.2003.05.013
|
[176] |
姚熊亮, 杨文山, 陈娟, 等. 沉底水雷爆炸威力的数值计算[J]. 爆炸与冲击, 2011, 31(2): 173-178.Yao Xiong-liang, Yang Wen-shan, Chen Juan, et al. Numerical Calculation of Explosion Power of Mines Lying on Seabed[J]. Explosion and Shock Waves, 2011, 31(2): 173-178.
|
[177] |
Saito T, Marumoto M. Experimental and Numerical Studies of Underwater Shock Wave Attenuation[J]. Shock Waves, 2013, 13(2): 139-148.
|
[178] |
杨莉, 汪玉, 杜志鹏, 等. 沉底装药水下爆炸冲击波传播规律[J]. 兵工学报, 2013, 34(1): 100-104.Yang Li, Wang Yu, Du Zhi-peng, et al. Research on Shock Wave Propagation of Underwater Explosion of Bottom Charge[J]. Acta Armamentarii, 2013, 34(1): 100-104.
|
[179] |
杨莉, 汪玉, 汪斌, 等. 沉底装药水中爆炸现象的实验研究[J]. 爆炸与冲击, 2013, 33(2): 175-180. doi: 10.3969/j.issn.1001-1455.2013.02.010Yang Li, Wang Yu, Wang Bin, et al. Experimental Investigation on Loading Characteristics of Underwater Explosion from a Bottom Charge[J]. Explosion and Shock Waves, 2013, 33(2): 175-180. doi: 10.3969/j.issn.1001-1455.2013.02.010
|
[180] |
杨莉, 巨圆圆, 武堃, 等. 装药沉底爆炸峰值压力试验及数值模拟研究[J]. 兵工学报, 2014, 35(S2): 368-372.Yang Li, Ju Yuan-yuan, Wu Kun, et al. Experiment and Simulation on Peak Pressure of Underwater Explosion of a Bottom Charge[J]. Acta Armamentarii, 2014, 35(S2): 368-372.
|
[181] |
王振雄, 顾文彬, 陈江海, 等. 浅水中爆炸水底介质对水中冲击波峰值压力影响的试验研究[J]. 振动与冲击, 2017, 36(4): 243-248. doi: 10.13465/j.cnki.jvs.2017.04.038Wang Zhen-xiong, Gu Wen-bin, Chen Jiang-hai, et al. Experimental Study on the Influence of the Bottom Medium on the Peak Pressure of Explosion Shock Waves in Shallow Water[J]. Journal of Vibration and Shock, 2017, 36(4): 243-248. doi: 10.13465/j.cnki.jvs.2017.04.038
|
[182] |
Slifko J F. Pressure-Pulse Characteristics of Deep Explosions as Functions of Depth and Range[R]. Washington, D. C.: NDRC, 1967.
|
[183] |
Xiao P, Yang K. Experimental Results for Peak Pressure and Sound Exposure Level in Deep-Sea Explosions[J]. Acoustics Australia, 2015, 43(2): 175-178. doi: 10.1007/s40857-015-0020-9
|
[184] |
Bernard Fridman. Theory of Underwater Explosion Bubbles[R]. New York: New York University, 1950.
|
[185] |
Arons A B. Secondary Pressure Pulses due to Gas Globe Oscillation in Underwater Explosions. I. Experimental Data[J]. Journal of the Acoustical Society of America, 1948, 20(3): 271-276. doi: 10.1121/1.1906371
|
[186] |
姚熊亮, 汪玉, 张阿漫. 水下爆炸气泡动力学[M]. 哈尔滨: 哈尔滨工程大学出版社, 2012.
|
[187] |
王树山, 梁策, 高源, 等. 深水爆炸二次压力波超压峰值的工程模型[J]. 兵工学报, 2022, 43(10): 2508-16.Wang Shu-shan, Liang Ce, Gao Yuan, et al. Engineering Model for Calculating Secondary Pressure Wave Overpressure Peak in Deep Water Explosion[J]. Acta Armamentarii, 2022, 43(10): 2508-16.
|
[188] |
钟帅. 模拟深水爆炸装药输出能量的研究[D]. 淮南: 安徽理工大学, 2007.
|
[189] |
朱宽, 钟冬望, 何理, 等. 基于高速摄影技术模拟深水爆破环境下气泡脉动规律研究[J]. 工程爆破, 2015, 21(1): 5-9. doi: 10.3969/j.issn.1006-7051.2015.01.002Zhu Kuan, Zhong Dong-wang, He Li, et al. Research on Blasting Bubble Pulsation Rules in Simulated Deepwater Environment Based on High-Speed Photography Technology[J]. Engineering Blasting, 2015, 21(1): 5-9. doi: 10.3969/j.issn.1006-7051.2015.01.002
|
[190] |
Li L, You Y. Time-frequency Energy Analysis of Deepwater Explosion Shock Wave Signals Based on HHT[C]//MATEC Web of Conferences. France: EDP Sciences, 2021, 336: 01017.
|
[191] |
郝轶, 周章涛, 张显丕. 球型密闭容器内水下爆炸载荷特性研究[C]//第十二届全国冲击动力学学术会议论文集. 宁波: 中国力学学会, 2015.
|
[192] |
马坤, 初哲, 王可慧, 等. 小当量炸药深水爆炸气泡脉动模拟实验[J]. 爆炸与冲击, 2015, 35(3): 320-325. doi: 10.11883/1001-1455-(2015)03-0320-06Ma Kun, Chu Zhe, Wang Ke-hui, et al. Experimental Research on Bubble Pulse of Small Scale Charge Exploded under Simulated Deep Water[J]. Explosion and Shock Waves, 2015, 35(3): 320-325. doi: 10.11883/1001-1455-(2015)03-0320-06
|
[193] |
Liang H, Zhang Q, Long R, et al. Pulsation Behavior of a Bubble Generated by a Deep Underwater Explosion[J]. AIP Advances, 2019, 9(2): 025108. doi: 10.1063/1.5086361
|
[194] |
张亮. 典型装药深水爆炸特性研究[D]. 北京: 北京理工大学, 2020.
|
[195] |
孟龙, 黄瑞源, 王金相, 等. 小当量梯恩梯水下爆炸气泡脉动的数值模拟[J]. 兵工学报, 2020, 41(S1): 64-71.Meng Long, Huang Rui-yuan, Wang Jin-xiang, et al. Numerical Simulation of Bubble Pulsation of Small-scaled TNT in Underwater Explosion[J]. Acta Armamentarii, 2020, 41(S1): 64-71.
|
[196] |
Gao Y, Wang S, Zhang J, et al. Effects of Underwater Explosion Depth on Shock Wave Overpressure and Energy[J]. Physics of Fluids, 2022, 34(3): 037108. doi: 10.1063/5.0081107
|
[197] |
Dular M, Coutier-Delgosha O. Thermodynamic Effects during Growth and Collapse of a Single Cavitation Bubble[J]. Journal of Fluid Mechanics, 2013, 736: 44-66. doi: 10.1017/jfm.2013.525
|
[198] |
Petkovek M, Dular M I R. Measurements of the Thermodynamic Effects in Cavitating Flow[J]. International Journal of Heat and Fluid Flow, 2013, 44(1): 756-763.
|
[199] |
郭锐, 俞旸晖. 水下爆炸声学效应研究现状与展望[J]. 水下无人系统学报, 2022, 30(3): 266-282. doi: 10.11993/j.issn.2096-3920.2022.03.001Guo Rui, Yu Yang-hui. Progress and Prospect of the Acoustic Effects of Underwater Explosions[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 266-282. doi: 10.11993/j.issn.2096-3920.2022.03.001
|
[200] |
程巍, 滕鹏晓, 吕君, 等. 基于大气声传播理论的爆炸声源能量估计[J]. 物理学报, 2021, 70(24): 135-141.Chen Wei, Teng Peng-xiao, Lü Jun, et al. Energy Estimation of Explosion Sound Source Based on Atmospheric Sound Propagation Theory[J]. Acta Physica Sinica, 2021, 70(24): 135-141.
|
[201] |
Ghoshal R, Mitra N. Underwater Explosion Induced Shock Loading of Structures: Influence of Water Depth, Salinity and Temperature[J]. Ocean Engineering, 2016, 126(1): 22-28.
|
[202] |
Keil A H. The Response of Ships to Underwater Explosions[J]. SNAME, 1961(69): 366-410.
|
[203] |
Reid W D. The Response of Surface Ships to Underwater Explosions[R]. Melbourne: DSTO Aeronautical and Maritime Research Laboratory, 1996.
|
[204] |
Keil A H. Introduction to Underwater Explosion Research[R]. Portsmouth, Virginia: UERD, Norfolk Naval Ship Yard, 1956.
|
[205] |
Pusey H C. Technical Information Support for Survivability[J]. The Shock and Vibration, Bullitin, 1983(53): 21-31.
|
[206] |
Rajendran R, Narasimhan K. A Shock Factor Based Approach for the Damage Assessment of Plane Plates Subjected to Underwater Explosion[J]. The Journal of Strain Analysis for Engineering Design, 2006, 41(6): 417-425. doi: 10.1243/03093247JSA120
|
[207] |
Rajendran R. Effective Shock Factors for the Inelastic Damage Prediction of Clamped Plane Plates Subjected to Non-Contact Underwater Explosion[J]. The Journal of Strain Analysis for Engineering Design, 2009, 44(3): 211-220. doi: 10.1243/03093247JSA463
|
[208] |
姚熊亮, 曹宇, 郭君, 等. 一种用于水面舰船的水下爆炸冲击因子[J]. 哈尔滨工程大学学报, 2007, 28(5): 501-509. doi: 10.3969/j.issn.1006-7043.2007.05.004Yao Xiong-liang, Cao Yu, Guo Jun, et al. Research on the Response of Warships to Impulsive Factor of Underwater Explosions[J]. Journal of Harbin Engineering University, 2007, 28(5): 501-509. doi: 10.3969/j.issn.1006-7043.2007.05.004
|
[209] |
姚熊亮, 郭君, 曹宇, 等. 在水下爆炸冲击波作用下的新型冲击因子[J]. 中国造船, 2008, 49(2): 52-60. doi: 10.3969/j.issn.1000-4882.2008.02.007Yao Xiong-liang, Guo Jun, Cao Yu, et al. A New Impulsive Factors on the Underwater Shock Load[J]. Shipbuilding of China, 2008, 49(2): 52-60. doi: 10.3969/j.issn.1000-4882.2008.02.007
|
[210] |
胡俊波, 张志华, 李庆民. 基于冲击因子的两个装药延时起爆目标毁伤评估方法研究[J]. 振动与冲击, 2012, 31(4): 92-95. doi: 10.3969/j.issn.1000-3835.2012.04.018Hu Jun-bo, Zhang Zhi-hua, Li Qing-min. Damage Evaluation of Underwater Target by Means of Two Explosions Initiated Successively with Time Delay Based on Impulsive Factor[J]. Journal of Vibration and Shock, 2012, 31(4): 92-95. doi: 10.3969/j.issn.1000-3835.2012.04.018
|
[211] |
胡宏伟, 宋浦, 王建灵, 等. 炸药水中爆炸冲击因子的新型计算方法[J]. 爆炸与冲击, 2014, 34(1): 11-16. doi: 10.3969/j.issn.1001-1455.2014.01.003Hu Hong-wei, Song Pu, Wang Jian-ling, et al. A New Calculation Method for Shock Factor of Underwater Explosion[J]. Explosion and Shock Waves, 2014, 34(1): 11-16. doi: 10.3969/j.issn.1001-1455.2014.01.003
|
[212] |
王树山, 张静骁, 王传昊, 等. 水中爆炸冲击波对靶体结构的毁伤准则研究[J]. 火炸药学报, 2020, 43(3): 262-270. doi: 10.14077/j.issn.1007-7812.201909015Wang Shu-shan, Zhang Jing-xiao, Wang Chuan-hao, et al. Damage Criterion of Underwater Explosion Shock Wave on Target[J]. Chinese Journal of Explosives & Propellants, 2020, 43(3): 262-270. doi: 10.14077/j.issn.1007-7812.201909015
|