[1] |
Kot R. Review of collision avoidance and path planning algorithms used in autonomous underwater vehicles[J]. Electronics, 2022, 11(15): 2301. doi: 10.3390/electronics11152301
|
[2] |
Guo Y, Liu H, Fan X, et al. Research progress of path planning methods for autonomous underwater vehicle[J]. Mathematical Problems in Engineering, 2021, 2021: 8847863.
|
[3] |
Hadi B, Khosravi A, Sarhadi P. A review of the path planning and formation control for multiple autonomous underwater vehicles[J]. Journal of Intelligent & Robotic Systems, 2021, 101(4): 67.
|
[4] |
An R, Guo S, Zheng L, et al. Uncertain moving obstacles avoiding method in 3D arbitrary path planning for a spherical underwater robot[J]. Robotics and Autonomous Systems, 2022, 151: 104011. doi: 10.1016/j.robot.2021.104011
|
[5] |
Wang X, Deng Y, Duan H. Edge-based target detection for unmanned aerial vehicles using competitive bird swarm algorithm[J]. Aerospace Science and Technology, 2018, 78: 708-720. doi: 10.1016/j.ast.2018.04.047
|
[6] |
Zhang Z, Yang T, Zhang T, et al. Global vision-based formation control of soft robotic fish swarm[J]. Soft Robot, 2020, 8: 310-318.
|
[7] |
Andreychuk A, Yakovlev K, Surynek P, et al. Multi-agent pathfinding with continuous time[J]. Artificial Intelligence, 2022, 305: 103662. doi: 10.1016/j.artint.2022.103662
|
[8] |
Ni J, Yang L, Shi P, et al. An improved DSA-based approach for multi-AUV cooperative search[J]. Computational Intelligence and Neuroscience, 2018, 2018: 2186574.
|
[9] |
Yu D, Chen P C. Smooth transition in communication for swarm control with formation change[J]. IEEE Transactions on Industrial Informatics, 2020, 16: 6962-71. doi: 10.1109/TII.2020.2971356
|
[10] |
Ebel H, Luo W, Yu F, et al. Design and experimental validation of a distributed cooperative transportation scheme[J]. IEEE Transactions on Automation Science and Engineering, 2020, 18: 1157-69.
|
[11] |
Yu J, Dong X, Li Q, et al. Distributed cooperative encirclement hunting guidance for multiple flight vehicles system[J]. Aerospace Science and Technology, 2019, 95: 105475. doi: 10.1016/j.ast.2019.105475
|
[12] |
Huang Z, Zhu D, Sun B. A multi-AUV cooperative hunting method in 3-D underwater environment with obstacle[J]. Engineering Applications of Artificial Intelligence, 2016, 50: 192-200. doi: 10.1016/j.engappai.2016.01.036
|
[13] |
Cao X, Sun H, Jan G E. Multi-AUV cooperative target search and tracking in unknown underwater environment[J]. Ocean Engineering, 2018, 150: 1-11. doi: 10.1016/j.oceaneng.2017.12.037
|
[14] |
Zhu D, Tian B. Complete coverage path planning of autonomous underwater vehicle based on GBNN algorithm[J]. Journal of Intelligent & Robotic Systems, 2019, 94: 237-249.
|
[15] |
Ni J, Yang L, Wu L, et al. An improved spinal neural system-based approach for heterogeneous AUVs cooperative hunting[J]. International Journal of Fuzzy Systems, 2017, 20: 672-686.
|
[16] |
Cao X, Xu X. Hunting algorithm for multi-AUV based on dynamic prediction of target trajectory in 3D underwater environment[J]. IEEE Access, 2020, 8: 138529-38. doi: 10.1109/ACCESS.2020.3013032
|
[17] |
Cai L, Sun Q. Multi-autonomous underwater vehicle consistent collaborative hunting method based on generative adversarial network[J]. International Journal of Advanced Robotic Systems, 2020, 17: 663-678.
|
[18] |
Liang H, Fu Y, Kang F, et al. A behavior-driven coordination control framework for target hunting by UUV intelligent swarm[J]. IEEE Access, 2020, 8: 4838-59.
|
[19] |
Chen M, Zhu D. A novel cooperative hunting algorithm for inhomogeneous multiple autonomous underwater vehicles[J]. IEEE Access, 2018, 6: 7818-28. doi: 10.1109/ACCESS.2018.2801857
|
[20] |
朱心科, 侯斐, 孟肯, 等. 较强海流中的低速水下机器人路径优化[J]. 海洋技术学报, 2021, 40(6): 54-60. doi: 10.3969/j.issn.1003-2029.2021.06.008Zhu Xinke, Hou Fei, Meng Ken, et al. The path plan for the low speed autonomous underwater vehicle in stronger ocean current[J]. Journal of Ocean Technology, 2021, 40(6): 54-60. doi: 10.3969/j.issn.1003-2029.2021.06.008
|
[21] |
付乐乐, 陈宏, 巩伟杰. 基于改进蚁群算法的水下机器人路径规划[J]. 自动化与仪表, 2022, 37(4): 46-50.Fu Lele, Chen Hong, Gong Weijie. Path planning of underwater robot based on improved ant colony algorithm[J]. Automation & Instrumentation, 2022, 37(4): 46-50.
|
[22] |
刘兴盛, 王俊雄. 基于改进蚁群算法的水下机器人路径规划算法[J]. 舰船科学技术, 2022, 44(21): 80-87. doi: 10.3404/j.issn.1672-7649.2022.21.017Liu Xingsheng, Wang Junxiong. Research on path planning algorithm for underwater robots based on improved ant colony algorithm[J]. Ship Science and Technology, 2022, 44(21): 80-87. doi: 10.3404/j.issn.1672-7649.2022.21.017
|
[23] |
赵苗, 高永琪, 吴笛霄, 等. 复杂海战场环境下AUV全局路径规划方法[J]. 国防科技大学学报, 2021, 43(1): 41-48. doi: 10.11887/j.cn.202101006Zhao Miao, Gao Yongqi, Wu Dixiao, et al. AUV global path planning method in complex sea battle field environment[J]. Journal of National University of Defense Technology, 2021, 43(1): 41-48. doi: 10.11887/j.cn.202101006
|
[24] |
谢新连, 刘超, 魏照坤. 海洋气象环境影响下的复杂水域船舶路径规划[J]. 重庆交通大学学报(自然科学版), 2021, 40(2): 8.Xie Xinlian, Liu Chao, Wei Zhaokun. Ship path planning in complex water areas under the influence of marine meteorological environment[J]. Journal of Chongqing Jiaotong University (Natural Sciences), 2021, 40(2): 8.
|
[25] |
Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1): 269-271. doi: 10.1007/BF01386390
|
[26] |
Lee C Y. An algorithm for path connections and its applications[J]. IRE Transactions on Electronic Computers, 1961, EC-10(3): 346-365. doi: 10.1109/TEC.1961.5219222
|
[27] |
马小轩, 吴韵哲, 吴浩峻, 等. 基于改进人工势场法的水下自主航行器路径规划[J]. 船舶工程, 2021, 43(9): 89-93. doi: 10.13788/j.cnki.cbgc.2021.09.16Ma Xiaoxuan, Wu Yunzhe, Wu Haojun, et al. Path planning of autonomous underwater vehicle based on improved artificial potential field method[J]. Ship Engineering, 2021, 43(9): 89-93. doi: 10.13788/j.cnki.cbgc.2021.09.16
|
[28] |
周兰凤, 孔明月. 基于改进人工势场法的无人机三维避障[J]. 华东师范大学学报(自然科学版), 2022(6): 54-67.Zhou Lanfeng, Kong Mingyue. 3D obstacle-avoidance for a unmanned aerial vehicle based on the improved artificial potential field method[J]. Journal of East China Normal University(Natural Science), 2022(6): 54-67.
|
[29] |
Hart P E, Nilsson N J, Raphael B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science & Cybernetics, 1972, 4(2): 28-29.
|
[30] |
Koenig S, Likhachev M, Furcy D. Lifelong planning A*[J]. Artificial Intelligence, 2004, 155(1): 93-146.
|
[31] |
Bing S, Zhu D. Three dimensional D*Lite path planning for autonomous underwater vehicle under partly unknown environment[C]//Intelligent Control & Automation. Guilin, China: IEEE, 2016.
|
[32] |
蒋林, 方东君, 周和文, 等. 基于射线模型的改进全局路径规划算法[J]. 电子学报, 2022, 50(3): 548-556.Jiang Lin, Fang Dongjun, Zhou Hewen, et al. Improved global path planning algorithm based on ray model[J]. Acta Electronica Sinica, 2022, 50(3): 548-556.
|
[33] |
Dolgov D, Thrun S, Montemerlo M, et al. Practical Search Techniques in Path Planning for Autonomous Driving[EB/OL]. [2023-02-01]. https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=9620D1EC370CA180A26E1EE1BEFD91E8?doi=10.1.1.165.6008&rep=rep1&type=pdf.
|
[34] |
LaValle S M. Rapidly-exploring random trees: A new tool for path planning[R]. Ames, USA: Iowa State University, 1998.
|
[35] |
Kavraki L E, Svestka P, Latombe J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Transactions on Robotics & Automation, 1996, 12(4): 566-580.
|
[36] |
Karaman S, Frazzoli E. Sampling-based algorithms for optimal motion planning[J]. The International Journal of Robotics Research, 2011, 30(7): 846-894. doi: 10.1177/0278364911406761
|
[37] |
张一帆, 史国友, 徐家晨. 基于人工势场法引导的Bi-RRT的水面无人艇路径规划算法[J]. 上海海事大学学报, 2022, 43(4): 16-22.Zhang Yifan, Shi Guoyou, Xu Jiachen. Path planning algorithm of unmanned surface vehicles based on Bi-RRT guided by artificial potential field[J]. Journal of Shanghai Maritime University, 2022, 43(4): 16-22.
|
[38] |
Chen L, Shan Y, Tian W, et al. A fast and efficient double-tree rrt*-like sampling-based planner applying on mobile robotic systems[J]. IEEE/ASME transactions on mechatronics, 2018, 23(6): 2568-2578. doi: 10.1109/TMECH.2018.2821767
|
[39] |
Chandler B, Goodrich M A. Online RRT and online FMT: rapid replanning with dynamic cost[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, BC, Canada: IEEE, 2017.
|
[40] |
Holland J H. Adaptation in natural and artificial systems[R]. Ann Arbor: University of Michigan, 1995.
|
[41] |
张美燕, 蔡文郁. 基于多AUV间任务协作的水下多目标探测路径规划[J]. 传感技术学报, 2018, 31(7): 1101-07. doi: 10.3969/j.issn.1004-1699.2018.07.021Zhang Meiyan, Cai Wenyu. Underwater targets tracking path planning based on task cooperation of multiple AUVs[J]. Chinese Journal of Sensors and Actuators, 2018, 31(7): 1101-07. doi: 10.3969/j.issn.1004-1699.2018.07.021
|
[42] |
Kapanoglu M, Alikalfa M, Ozkan M, et al. A pattern-based genetic algorithm for multi-robot coverage path planning minimizing completion time[J]. Journal of Intelligent Manufacturing, 2012, 23(4): 1035-45. doi: 10.1007/s10845-010-0404-5
|
[43] |
Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]// Mhs95 Sixth International Symposium on Micro Machine & Human Science. Nagoya, Japan: IEEE, 2002.
|
[44] |
郭兴海, 计明军, 张卫丹. 可变洋流环境中自主水下航行器动态路径规划的改进QPSO算法[J]. 系统工程理论与实践, 2021, 41(8): 2112-24. doi: 10.12011/SETP2019-0647Guo Xinghai, Ji Mingjun, Zhang Weidan. Improved QPSO algorithm for dynamic path planning of autonomous underwater vehicles in variable ocean current environment[J]. Systems Engineering-Theory & Practice, 2021, 41(8): 2112-24. doi: 10.12011/SETP2019-0647
|
[45] |
邹佳运, 曲泓玥, 陈志鹏. 大规模水下滑翔机集群区域覆盖探测路径规划[J]. 水下无人系统学报, 2021, 29(1): 23-29. doi: 10.11993/j.issn.2096-3920.2021.01.04Zou Jiayun, Qu Hongyue, Chen Zhipeng. Path planning of a large-scale underwater glider swarm area coverage detection[J]. Journal of Unmanned Undersea Systems, 2021, 29(1): 23-29. doi: 10.11993/j.issn.2096-3920.2021.01.04
|
[46] |
王浩亮, 卢丽宇, 王丹, 等. 多圆碟形水下滑翔机的双层协调三维路径规划[J]. 控制理论与应用, 2022, 39: 1-8. doi: 10.7641/CTA.2021.10082Wang Haoliang, Lu Liyu, Wang Dan, et al. Double-layer coordinated three-dimensional path planning for multiple saucer-type autonomous underwater gliders[J]. Control Theory & Applications, 2022, 39: 1-8. doi: 10.7641/CTA.2021.10082
|
[47] |
Wang P. Navigation strategies for multiple autonomous robots moving in formation[C]//Proceedings of IEEE/RSJ International Workshop on Intelligent Robots and Systems. Tsukuba, Japan: IEEE, 1989.
|
[48] |
赖云晖, 李瑞, 史莹晶, 等. 基于图论法的四旋翼三角形结构编队控制[J]. 控制理论与应用, 2018, 35(10): 1530-37. doi: 10.7641/CTA.2018.80065Lai Yunhui, Li Rui, Shi Yingjing, et al. On the study of multi-quadrotor formation control with triangular structure based on Graph theory[J]. Control Theory & Applications, 2018, 35(10): 1530-37. doi: 10.7641/CTA.2018.80065
|
[49] |
Yan Z, Liu Y, Zhou J, et al. Moving target following control of multi-AUVs formation based on rigid virtual leader-follower under ocean current[C]//2015 34th Chinese Control Conference (CCC). Hangzhou, China: IEEE, 2015.
|
[50] |
Lewis M A, Tan K H. High precision formation control of mobile robots using virtual structures[J]. Autonomous Robots, 1997, 4(4): 387-403. doi: 10.1023/A:1008814708459
|
[51] |
Cervantes J, Wen Y, Sergio S, et al. Output based backstepping control for trajectory tracking of an autonomous underwater vehicle[C]//2016 American Control Conference (ACC). Boston, MA, USA: IEEE, 2016.
|
[52] |
潘无为, 姜大鹏, 庞永杰, 等. 人工势场和虚拟结构相结合的多水下机器人编队控制[J]. 兵工学报, 2017, 38(2): 9. doi: 10.3969/j.issn.1000-1093.2017.02.017Pan Wuwei, Jiang Dapeng, Pang Yongjie, et al. A multi-AUV formation algorithm combining artificial potential field and virtual structure[J]. Arta Armamentarii, 2017, 38(2): 9. doi: 10.3969/j.issn.1000-1093.2017.02.017
|
[53] |
Hacene N, Mendil B. Behavior-based autonomous navigation and formation control of mobile robots in unknown cluttered dynamic environments with dynamic target tracking[J]. Int. J. Autom. Comput., 2021, 18: 766-786. doi: 10.1007/s11633-020-1264-x
|
[54] |
Kang X D, Xu H L, Feng X S. Fuzzy logic based behavior fusion for multi-AUV formation keeping in uncertain ocean environment[C]//Oceans 2009. Biloxi, MS, USA: IEEE, 2009.
|
[55] |
Zhao Z, Hu Q, Feng H, et al. A cooperative hunting method for multi-AUV swarm in underwater weak information environment with obstacles[J]. Journal of Marine Science and Engineering, 2022, 10(9): 1266. doi: 10.3390/jmse10091266
|
[56] |
冯豪博, 胡桥, 赵振轶. 基于精英族系遗传算法的AUV集群路径规划[J]. 系统工程与电子技术, 2022, 44(7): 2251-62. doi: 10.12305/j.issn.1001-506X.2022.07.21Feng Haobo, Hu Qiao, Zhao Zhenyi. AUV swarm path planning based on elite family genetic algorithm[J]. Systems Engineering and Electronics, 2022, 44(7): 2251-62. doi: 10.12305/j.issn.1001-506X.2022.07.21
|
[57] |
冯豪博. 自主式水下航行器集群动态路径规划及编队运动控制研究[D]. 西安: 西安交通大学, 2023.
|