Similarity Magnetic Field Measurement Method Based on the Dynamic Time Warping Algorithm
-
摘要: 在舰船磁场模拟及磁探测系统的目标识别中, 需要对模拟或探测磁场与真实目标磁场分布的相似程度进行评估。文中针对以往评估方法存在的问题, 提出利用动态时间规整(DTW)算法计算磁场的相似度, 解决了目标速度不同和起止点不一致情况下的磁场曲线相似度评估问题; 为降低磁场曲线局部扰动带来的影响, 利用最长公共子串对DTW算法进行了优化, 提高了相似度计算精度; 最后以模型试验验证了算法的正确性。与传统评估方法相比, 该方法无需人工预先设置参数, 能直接给出相似度评价结果, 可应用于舰船磁场模拟效果评估及磁探测系统的目标识别。Abstract: Simulating the magnetic field of a ship and identifying targets using magnetic detection requires evaluating the similarity of the magnetic field distribution obtained from the simulation and detection with the magnetic field distribution of the real target. In view of the problems existing in previous evaluation methods, the use of dynamic time warping algorithm is proposed to calculate the similarity of the magnetic field and solve the problem of evaluating the similarity of the magnetic field curve under different target speeds and inconsistent starting and ending points. To reduce the influence of local disturbances of the magnetic field curve, the longest common substring is used to optimize the dynamic time warping algorithm, thereby improving the calculation accuracy of similarity. Finally, the accuracy of the algorithm is verified by model testing. Compared with the traditional evaluation methods, no parameters need to be manually set in advance and the similarity evaluation result can be given directly, enabling the evaluation of the simulation effect of the ship’s magnetic field and identification of targets from magnetic detection.
-
表 1 试验一磁场三分量及总量相似度
Table 1. Similarity of three-component magnetic and total magnetic of experment 1
磁场 Φ ω α ωα Bx 0.872 3 0.961 9 0.997 9 0.961 9 By 0.864 8 0.941 7 0.997 0 0.941 9 Bz 0.860 4 0.934 3 0.997 7 0.934 5 B 0.855 9 0.935 2 0.997 7 0.935 3 表 2 试验二磁场三分量及总量相似度
Table 2. Similarity of three-component magnetic and total magnetic of experment 2
磁场 Φ ω α ωα Bx 0.843 2 0.926 8 0.995 5 0.927 1 By 0.823 8 0.915 4 0.995 3 0.915 7 Bz 0.834 6 0.930 0 0.995 5 0.930 2 B 0.805 9 0.882 5 0.995 5 0.884 9 -
[1] Valentino B, Balch-Lindsay D. Draining the sea: Mass killing and guerilla warfare[J]. International Organization, 2004, 58(2): 375-407. [2] Been R, Hughes D T, Potter J R, et al. Cooperative anti-submarine warfare at NURC moving towards a net-centric capability[C]//Oceans’10 IEEE Sydney. Sydney, Australia: IEEE, 2010. [3] Washburn A, Kress M. Combat modeling[M]. New York, USA: Springer, 2009: 161-183. [4] Dimitropoulos K, Grammalidis N, Gragopoulos I, et al. Detection, tracking and classification of vehicles and aircraft based on magnetic sensing technology[J]. Proceedings of World Academy of Science Engineering & Technology, 2006, 1(4): 195-200. [5] Randjelovic Z B, Kayal M, Popovic R, et al. Highly sensitive hall magnetic sensor microsystem in CMOS technology[J]. IEEE Journal of Solid-State Circuits, 2002, 37(2): 151-159. doi: 10.1109/4.982421 [6] 陈浩, 潘逊, 肖大为. 模拟舰船磁场的两轴磁体设计研究[J]. 兵工学报, 2020, 41(6): 1173-1178. doi: 10.3969/j.issn.1000-1093.2020.06.014Chen Hao, Pan Xun, Xiao Dawei. Design and research on two-axis magnet for simulating ship magnetic field[J]. Acta Armamentarii, 2020, 41(6): 1173-1178. doi: 10.3969/j.issn.1000-1093.2020.06.014 [7] 陈卫兵. 几种图像相似性度量的匹配性能比较[J]. 计算机应用, 2010, 30(1): 98-101. doi: 10.3724/SP.J.1087.2010.00098Chen Weibing. Comparison of matching capabilities in similarity measurements[J]. Journal of Computer Applications, 2010, 30(1): 98-101. doi: 10.3724/SP.J.1087.2010.00098 [8] Groenen P J F, Mathar R, Heiser W J. The majorization approach to multidimensional scaling for Minkowski distances[J]. Journal of Classification, 1995, 12(1): 3-19. doi: 10.1007/BF01202265 [9] Huttenlocher D P, Klanderman G A, Rucklidge W A. Comparing images using the Hausdorff distance[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1993, 15(9): 850-863. [10] 高孝杰, 简季, 戴晓爱, 等. 基于Fréchet距离的光谱曲线匹配应用分析[J]. 武汉大学学报(信息科学版), 2016, 41(3): 408-414.Gao Xiaojie, Jian Ji, Dai Xiaoai, et al. Spectral curve matching application analysis based on Fréchet distance[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 408-414. [11] Alt H, Godau M. Computing the Fréchet distance between two polygonal curves[J]. International Journal of Computational Geometry & Applications, 1995, 5(1/2): 75-91. [12] 石剑, 刘忠乐, 周敏佳, 等. 一种基于离散Fréchet距离的磁场相似性度量方法[J]. 电子学报, 2018, 46(4): 857-861. doi: 10.3969/j.issn.0372-2112.2018.04.013 [13] 陈春华, 李薇, 陈雅莉. 基于优化DTW算法的水文要素时间序列数据相似性分析[J]. 水文, 2021, 41(3): 45-47. doi: 10.19797/j.cnki.1000-0852.20200124 [14] 叶云飞, 赵爽. 一种基于移动智能终端的手势控制系统的设计与实现[J]. 信息通信, 2015, 46(3): 52-54. [15] 杜辉, 郑长亮, 苗春雨, 等. 一种动态特征匹配的部分重叠点云配准方法[J]. 电信科学, 2021, 37(4): 97-107. doi: 20201231.1012.002