• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深平均流预测模型的水下滑翔机路径优化

刘强 边刚 张胜军 戴仁威

刘强, 边刚, 张胜军, 等. 基于深平均流预测模型的水下滑翔机路径优化[J]. 水下无人系统学报, 2023, 31(3): 398-404 doi: 10.11993/j.issn.2096-3920.202204016
引用本文: 刘强, 边刚, 张胜军, 等. 基于深平均流预测模型的水下滑翔机路径优化[J]. 水下无人系统学报, 2023, 31(3): 398-404 doi: 10.11993/j.issn.2096-3920.202204016
LIU Qiang, BIAN Gang, ZHANG Shengjun, DAI Renwei. Path Optimization of Underwater Glider Based on Depth-averaged Current Prediction Model[J]. Journal of Unmanned Undersea Systems, 2023, 31(3): 398-404. doi: 10.11993/j.issn.2096-3920.202204016
Citation: LIU Qiang, BIAN Gang, ZHANG Shengjun, DAI Renwei. Path Optimization of Underwater Glider Based on Depth-averaged Current Prediction Model[J]. Journal of Unmanned Undersea Systems, 2023, 31(3): 398-404. doi: 10.11993/j.issn.2096-3920.202204016

基于深平均流预测模型的水下滑翔机路径优化

doi: 10.11993/j.issn.2096-3920.202204016
基金项目: 国家自然科学基金(41876103, 41974005)
详细信息
    作者简介:

    刘强:刘 强(1989-), 男, 博士, 工程师, 主要从事海洋地球物理测量及无人装备运用研究

  • 中图分类号: TJ630; U674.941

Path Optimization of Underwater Glider Based on Depth-averaged Current Prediction Model

  • 摘要: 随着水下滑翔机在海洋调查及声学探测领域的广泛运用, 精准、高效控制其路径对精细化海洋观测至关重要。针对水下滑翔机受海流影响产生较大偏航差问题, 采用最小二乘支持向量机法(LSSVM)预测深平均流, 以单剖面偏航差最小为目标函数, 以实际航向与计划航向夹角不超过一定值为约束条件, 构建非线性约束极值模型, 确定预设剖面最优目标航向及出水点坐标, 从而实现路径优化目的。采用“海燕-II”型水下滑翔机历史数据进行验证, 结果表明: 1) LSSVM法预测深平均流准确性较高, 但当局部流向有明显变化时预测效果不佳, 取前3个剖面数据作为训练样本时预测效果更好; 2) 采用文中方法优化后, 水下滑翔机路径更稳定, 各剖面偏航差平均为281.1 m。

     

  • 图  1  深平均流计算示意图

    Figure  1.  Schematic diagram of depth-averaged current calculation

    图  2  水下滑翔机路径优化示意图

    Figure  2.  Schematic diagram of underwater glider path optimization

    图  3  水下滑翔机航线及深平均流分布图

    Figure  3.  Underwater glider route and depth-averaged current distribution

    图  4  取前3个剖面预测深平均流对比图

    Figure  4.  Comparison of predicted depth-averaged current of the first three sections

    图  5  优化前后水下滑翔机航行路径对比图

    Figure  5.  Comparison of underwater glider navigation path before and after optimization

    图  6  优化前后水下滑翔机各剖面偏航差对比图

    Figure  6.  Comparison of profile path deviation of underwater glider before and after optimization

    表  1  水下滑翔机剖面信息统计表

    Table  1.   Profile information statistics of underwater glider

    统计要素最小值最大值平均值标准差
    运行时间/min143.00163.00151.908.70
    静水航速/(m/s)0.410.690.540.05
    实际航速/(m/s)0.130.950.470.16
    深平均流/(m/s)0.010.530.280.12
    下载: 导出CSV

    表  2  深平均流预测误差统计

    Table  2.   Error statistics of predicted depth-averaged current

    深平
    均流
    剖面数均方根误差系数最小
    误差
    最大误差误差均值
    流速
    /(m/s)
    30.0160.992−0.0460.0770.000 8
    40.0180.988−0.0560.0570.001 1
    50.0200.986−0.0590.0590.001 0
    60.0220.983−0.0680.0680.001 2
    流向
    /(°)
    38.2000.990−41.50051.6000.200 0
    410.2000.988−44.10075.1000.500 0
    510.1000.986−40.30070.4000.500 0
    613.0000.976−66.70075.9000.300 0
    下载: 导出CSV
  • [1] 陈质二, 俞建成, 张艾群. 面向海洋观测的长续航力移动自主观测平台发展现状与展望[J]. 海洋技术学报, 2016, 35(1): 122-130.

    Chen Zhier, Yu Jiancheng, Zhang Aiqun. Overview on observation-oriented unmanned marine vehicles with high cruising ability: Development status and prospect[J]. Journal of Ocean Technology, 2016, 35(1): 122-130.
    [2] 杨绍琼, 成丹, 陈光耀. 面向典型海洋现象观测的水下滑翔机应用综述[J]. 热带海洋学报, 2022, 41(3): 54-74.

    Yang Shaoqiong, Cheng Dan, Chen Guangyao. Review on the application of underwater gliders for observing typical ocean phenomena[J]. Journal of Tropical Oceanography, 2022, 41(3): 54-74.
    [3] 沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.

    Shen Xinrui, Wang Yanhui, Yang Shaoqiong, et al. Development of underwater gliders: An overview and prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 89-106.
    [4] 顾建农, 张志宏, 王冲, 等. 海流对水下滑翔机运动参数的影响[J]. 海军工程大学学报, 2018, 30(4): 1-7.

    Gu Jiannong, Zhang Zhihong, Wang Chong, et al. Influence of ocean current on motion parameter of underwater glider[J]. Journal of Naval University of Engineering, 2018, 30(4): 1-7.
    [5] Ramos A G, Garcia-Garrido V J, Mancho A M, et al. Lagrangian coherent structure assisted path planning for transoceanic autonomous underwater vehicle missions[J]. Scientific Reports, 2018, 8(1): 4575. doi: 10.1038/s41598-018-23028-8
    [6] Shih C C, Hong M F, Chen C Y. A parallel genetic approach to path-planning with upstream current avoidance for multi-AUG deployment[J]. Soft Computing, 2020, 24(11): 8427-8441. doi: 10.1007/s00500-019-04409-1
    [7] Nicolai V O B, Zhou M X, Taimaz B, et al. Overview of a new ocean glider navigation system: OceanGNS[J]. Frontiers in Marine Science, 2021, 12(8): 296-308.
    [8] 桑宏强, 于佩元, 孙秀军. 基于航向补偿的水下滑翔机路径跟踪控制方法[J]. 水下无人系统学报, 2019, 27(5): 541-547.

    Sang Hongqiang, Yu Peiyuan, Sun Xiujun. Path tracking control method of underwater glider based on heading compensation[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 541-547.
    [9] 宋大雷, 臧文川, 郭婷婷, 等. 水下滑翔机长航程全局路径规划[J]. 控制工程, 2020, 27(10): 1680-1685.

    Song Dalei, Zang Wenchuan, Guo Tingting, et al. Global path planning for long range voyage of underwater gliders[J]. Control Engineering of China, 2020, 27(10): 1680-1685.
    [10] 朱心科, 侯斐, 孟肯, 等. 较强海流中的低速水下机器人路径优化[J]. 海洋技术学报, 2021, 40(6): 54-60.

    Zhu Xinke, Hou Fei, Meng Ken, et al. The path plan for the low speed autonomous underwater vehicle in stronger ocean current[J]. Journal of Ocean Technology, 2021, 40(6): 54-60.
    [11] Merckelbach L M, Briggs R D, Smeed D A, et al. Current measurements from autonomous underwater gliders[C]//9th IEEE/OES Working Conference on Current Measurement Technology. Piscataway, NJ, USA: IEEE, 2008: 61-67.
    [12] Smith R N, Kelly J, Chao Y, et al. Towards the improvement of autonomous glider navigational accuracy through the use of regional ocean models[C]//ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. New York, NY, USA: ASME, 2010: 597-606.
    [13] Chang D, Zhang F, Edwards C R. Real-time guidance of underwater gliders assisted by predictive ocean models[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(3): 562-578. doi: 10.1175/JTECH-D-14-00098.1
    [14] 周耀鉴, 刘世杰, 俞建成, 等. 基于局部流场构建的水下滑翔机路径规划[J]. 机器人, 2018, 40(1): 1-7.

    Zhou Yaojian, Liu Shijie, Yu Jiancheng, et al. Underwater glider path planning based on local flow field construction[J]. Robot, 2018, 40(1): 1-7.
    [15] 何柏岩, 杜金辉, 杨绍琼, 等. 基于VMD-LSSVM的水下滑翔机深平均流预测[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(4): 388-396.

    He Baiyan, Du Jinhui, Yang Shaoqiong, et al. Prediction of underwater glider depth-averaged current velocity based on VMD-LSSVM[J]. Journal of Tianjin University (Science and Technology), 2021, 54(4): 388-396.
    [16] Zhou Y, Liu S, Zhang Y, et al. Method for predicting depth-averaged current velocities of underwater gliders based on data feature analysis[J]. AIP Advances, 2021, 11(7): 075203. doi: 10.1063/5.0058318
    [17] 刘凡俊, 李登有. 球面的距离公式及其应用[J]. 数学教学研究, 2013, 32(3): 39-40. doi: 10.3969/j.issn.1671-0452.2013.03.012

    Liu Fanjun, Li Dengyou. Distance formula of sphere and application[J]. Research of Mathematic Teaching-Learning, 2013, 32(3): 39-40. doi: 10.3969/j.issn.1671-0452.2013.03.012
    [18] Vincenty T. Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations[J]. Survey Review, 1975, 23(176): 88-93.
    [19] Suykens J A K, Vandewalle J. Least squares support vectors machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300. doi: 10.1023/A:1018628609742
    [20] 谢政, 李建平. 非线性最优化理论与方法[M]. 北京: 高等教育出版社, 2010.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  71
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 修回日期:  2022-05-16
  • 录用日期:  2022-06-27
  • 网络出版日期:  2023-05-26

目录

    /

    返回文章
    返回
    服务号
    订阅号