Effect of Material Density on the Tail-slapping Characteristics ofSupercavitating Projectiles
-
摘要: 水下超空泡射弹的尾拍运动对其弹道稳定性和作战效能具有重要影响, 为研究不同材料密度对射弹尾拍运动特性的影响, 采用动网格移动计算域技术, 建立了超空泡射弹数值计算方法和模型, 分别计算分析了铝合金、结构钢及钨合金3种不同材料超空泡射弹的弹道特性与流体动力特性, 获得了材料密度对射弹尾拍运动的影响规律。结果表明: 在出膛动能一定的条件下, 不同材料密度的射弹攻角、俯仰角速度和流体动力参数均呈周期性变化; 材料密度越大, 射弹尾拍运动周期越长, 速度衰减越慢, 对垂直方向速度影响越小。对比3种材料的射弹, 采用结构钢材质的射弹表现出更为优良的弹道性能。Abstract: Generally, the tail-slapping motion of underwater supercavitating projectiles has a significant impact on their ballistic stability and operational performance. In this study, a numerical model of such supercavitating projectiles integrating a dynamic mesh is established to investigate the impacts of the tail-slapping characteristics of supercavitating projectiles under different material densities. Moreover, the ballistic and hydrodynamic characteristics of projectiles using aluminum alloys, structural steels, and tungsten alloys are scrutinized. Consequently, the attack angle, pitch angular velocity, and hydrodynamic coefficient of the tail-slapping motion of the projectile are found to demonstrate periodic changes with the material density under a given export kinetic energy. Additionally, the greater the material density, the longer the period of tail slapping; the slower the speed decay, the smaller the impact on the vertical speed of the projectile. Interestingly, the structural steel projectile demonstrates the best ballistic performance among the three candidate materials.
-
表 1 超空泡射弹主要外形参数
Table 1. The main shape parameters of the supercavitating projectile
L/mm Dn/mm La/mm Lc/mm Dc/mm LG/mm 608.00 11.88 516.80 91.20 76.00 181.79 表 2 数值仿真与试验数据点偏差值表
Table 2. Table of the deviations of numerical simulation and experimental data points
x/Lb r/Dn 相对偏差值/% Hurbes试验 数值计算 0.1 2.2 2.3 4.5 0.4 4.1 4.2 2.4 1.0 6.3 6.5 3.2 1.3 7.0 7.2 2.9 表 3 各材料密度射弹参数表
Table 3. Table of the parameters of the projectiles under different material densities
射弹
材料密度/(kg·m3) 质量/kg X轴转动惯量/(kg·mm2) Y轴转动惯量/(kg·mm2) Z轴转动惯量/(kg·mm2) 铝合金 2 700 3.61 1 889.89 65 482.18 65 482.18 结构钢 7 800 10.49 5 494.69 190 383.36 190 383.36 钨合金 19 000 25.39 13 299.25 460 800.49 460 800.49 表 4 不同材料射弹阻力系数
Table 4. Drag coefficient under different materials
射弹材料 平均阻力系数 铝合金 0.023 6 结构钢 0.023 6 钨合金 0.023 9 -
[1] 魏英杰, 何乾坤, 王聪, 等. 超空泡射弹尾拍问题研究进展[J]. 舰船科学技术, 2013, 35(1): 7-15.Wei Yingjie, He Qiankun, Wang Cong, et al. Review of study on the tail-slap problems of supercavitating projectile[J]. Ship Science and Technology, 2013, 35(1): 7-15. [2] 姜百汇, 马春勋, 刘乐华. 国外超空泡技术及其应用[J]. 飞航导弹, 2008(11): 20-24. doi: 10.16338/j.issn.1009-1319.2008.11.008Jiang Baihui, Ma Chunxun, Liu Lehua. Foreign supercavitating technology and its application[J]. Aerodynamic Missile Journal, 2008(11): 20-24. doi: 10.16338/j.issn.1009-1319.2008.11.008 [3] Savchenko Y N. Control of supercavitation flow and stability of supercavitating motion of bodies[C]//VKI Special Course on Supercavitating Flows. Brussels, Belgium: von Karman Institute for Fluid Dynamics, 2001. [4] 李喜顺, 江玉峰. 重力对超空泡射弹稳定性的影响[J]. 四川兵工学报, 2011, 32(5): 43-44.Li Xishun, Jiang Yufeng. Impact of gravity for stability of super-vacuole projectile[J]. Journal of Sichuan Ordnance, 2011, 32(5): 43-44. [5] May A. Water entry and the cavity-running behavior of missiles[R]. Arlington: Naval Sea Systems Command, 1975. [6] Rand R, Pratap R, Ramain D, et al. Impact dynamics of a supercavitating underwater projectile[C]//Proceedings of the 1997 ASME Design Engineering Technical Conferences. Sacramento, CA, US: ASME, 1997. [7] Savchenko Y N. Investigation of high-speed supercavitating underwater motion of bodies[C]// Proceedings of NATO-AGARD. Kiev: NAS-IHM, 1997: 1-12. [8] 梁景奇, 徐保成, 王瑞, 等. 初速对高速射弹尾拍特性影响研究[J]. 弹箭与制导学报, 2020, 40(2): 130-134. doi: 10.15892/j.cnki.djzdxb.2020.02.032Liang Jingqi, Xu Baocheng, Wang Rui, et al. Study on the influence of initial velocity on the characteristics of high speed projectile tail-slapping[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(2): 130-134. doi: 10.15892/j.cnki.djzdxb.2020.02.032 [9] 陈伟善, 郭则庆, 刘如石, 等. 空化器形状对超空泡射弹尾拍运动影响的数值研究[J]. 工程力学, 2020, 45(4): 1370-85.Chen Weishan, Guo Zeqing, Liu Rushi, et al. Numerical simulation on the influence of cavitator shapes on the tail-slap of supercavitating projectiles[J]. Engineering Mechanics, 2020, 45(4): 1370-85. [10] 赵成功, 王聪, 魏英杰, 等. 质心位置对超空泡射弹尾拍运动影响分析[J]. 北京航空航天大学学报, 2014, 40(12): 1754-60. doi: 10.13700/j.bh.1001-5965.2014.0014Zhao Chenggong, Wang Cong, Wei Yingjie, et al. Analysis of the effect of mass center position on tailslap of supercavitating projectile[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(12): 1754-60. doi: 10.13700/j.bh.1001-5965.2014.0014 [11] 张浩. 基于波浪条件下射弹入水弹道特性研究[D]. 太原: 中北大学, 2021. [12] Zhao X, Lyu X, Da L I. Modeling of the tail slap for a supercavitating projectile[C]//2018 IEEE 8th International Conference on Underwater System Technology: Theory and Applications. Wuhan, China: IEEE, 2018. [13] 蔡涛, 李强, 鹿麟, 等. 空化槽对弹丸水下运动特性的影响[J]. 兵器装备工程学报, 2020, 41(3): 36-40. doi: 10.11809/bqzbgcxb2020.03.007Cai Tao, Li Qiang, Lu Lin, et al. Influence of cavitation groove on movement characteristics of projectile underwater[J]. Journal of Ordnance Equipment Engineering, 2020, 41(3): 36-40. doi: 10.11809/bqzbgcxb2020.03.007 [14] Ping W, Jian H, Chen T. Stability analysis and control of supercavitation projectile[C]//2012 IEEE International Conference on Intelligent Control, Automatic Detection and High-End Equipment. Beijing, China: IEEE, 2012. [15] 黄闯. 跨声速超空泡射弹的弹道特性研究[D]. 西安: 西北工业大学, 2017. [16] 刘富强, 罗凯, 黄闯, 等. 并列超空泡射弹弹道特性研究[J]. 水下无人系统学报, 2020, 28(2): 202-208. doi: 10.11993/j.issn.2096-3920.2020.02.013Liu Fuqiang, Luo Kai, Huang Chuang, et al. Study on ballistic characteristics of the parallel supercavitating projectiles[J]. Journal of Unmanned Undersea Systems, 2020, 28(2): 202-208. doi: 10.11993/j.issn.2096-3920.2020.02.013 [17] Moin P. Progress in large eddy simulation of turbulent flows[C]//35th Aerospace Sciences Meeting and Exhibit. Stanford, CA: AIAA, 1997. [18] 黄闯, 罗凯, 党建军, 等. 流域径向尺度对自然超空泡的影响规律[J]. 西北工业大学学报, 2015, 33(6): 936-941. doi: 10.3969/j.issn.1000-2758.2015.06.011Huang Chuang, Luo Kai, Dang Jianjun, et al. Influence of flow field’s radial dimension on natural supercavity[J]. Journal of Northwestern Polytechnical University, 2015, 33(6): 936-941. doi: 10.3969/j.issn.1000-2758.2015.06.011 [19] 钱铖铖. 超空泡射弹高速入水数值模拟研究[D]. 南京: 南京理工大学, 2018. [20] 张学伟. 水下超空泡射弹运动仿真与弹道特性分析[D]. 太原: 中北大学, 2017. [21] 王瑞, 党建军, 姚忠, 等. 空化器锥角对射弹跨音速入水初期超空化流动影响研究[J]. 水下无人系统学报, 2019, 27(2): 200-205.Wang Rui, Dang Jianjun, Yao Zhong, et al. Influence of cavitator cone angle on supercavitation flow of projectile in initial stage of transonic water-entry[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 200-205. [22] Hrubes J D. High-speed imaging of supercavitating underwater projectiles[J]. Experiments in Fluids, 2001, 30(1): 57-64. doi: 10.1007/s003480000135