A Detection Method of Magnetic Anomaly Signal in Offshore Waters
-
摘要: 磁异常信号检测在近海防御领域应用前景广阔, 实现远距离、长时间监测是目前亟待解决的问题。文中提出一种水下磁异常探测模型, 引入小波域分析与正交基分解检测的方法, 通过对磁异常信号特征与小波分解频率分析, 提出一种自适应层数确定方法, 再进行去噪正交基分解能量检测的自主处理流程。针对小波域去噪问题, 在不同分解尺度下, 提出独立使用不同收缩系数对细节系数进行处理, 提高对高频噪声抑制效果。研究结果表明相对于传统小波去噪, 文中方法信噪比提升约27%, 误识别率降低39%。Abstract: Magnetic anomaly signal detection has broad application prospects in offshore defense, which is an urgent problem for realizing remote and long-term monitoring. In this paper, an underwater magnetic anomaly detection model is proposed, and wavelet domain analysis and orthogonal basis decomposition detection methods are introduced. Through the analysis of magnetic anomaly signal characteristics and wavelet decomposition frequency, adaptive layer determination method is proposed, and independent processing flow of denoising orthogonal basis decomposition energy detection was performed. To address the problem of wavelet domain denoising under different decomposition scales, different shrinkage coefficients are used to independently deal with detail coefficients to improve the effect of high-frequency noise suppression. The results show that compared with the traditional wavelet denoising, the signal-to-noise ratio of this method is improved by approximately 27%, and the false recognition rate is reduced by 39%.
-
表 1 信噪比与均方误差对比
Table 1. Comparison of signal to noise ratio and mean square Eerror
评价指标 Sn RRMSE 原始信号 −11.350 1.120 低通滤波 6.945 0.136 软阈值 13.214 0.066 文中方法 16.834 0.043 表 2 MS3A-02A-W传感器主要参数性能
Table 2. Main parameters of MS3A-02A-W
属性 范围 测量范围 −100~100 μT 峰峰值噪声 <0.2 nT 功率谱噪声 10~20 pT/Hz^1/2@1 Hz 频率响应 0~1 kHz(±5%) 功耗 <0.4 W 表 3 阈值检测FAR对比
Table 3. Comparison of false alarm rate
OBF检测方法 NAR NALL F 低通滤波 601 4500 13.4 小波软阈值 230 4500 5.1 文中方法 141 4500 3.1 -
[1] Chen K, Zhao Q, Deng M, et al. Seawater motion-induced electromagnetic noise reduction in marine magnetotelluric data using current meters[J]. Earth Planets and Space, 2020, 72(1): 1-11. doi: 10.1186/s40623-019-1127-2 [2] Liu W, Liu Z, Zhang Q, et al. Magnetic anomaly signal detection using parallel monostable stochastic resonance system[J]. IEEE Access, 2020, 99: 162230-37. [3] 徐震寰, 李予国, 罗鸣. 船舶轴频电磁场信号的海底测量及其特性分析[J]. 哈尔滨工程大学学报, 2018, 39(4): 652-657. doi: 10.11990/jheu.201612066Xu Zhenhuan, Li Yuguo, Luo Ming. Seabed survey and property analysis of ship’s shaft-rate electromagnetic signal[J]. Journal of Harbin Engineering University, 2018, 39(4): 652-657. doi: 10.11990/jheu.201612066 [4] 魏文博, 邓明, 温珍河, 等. 南黄海海底大地电磁测深试验研究[J]. 地球物理学报, 2009, 52(3): 740-749.Wei Wenbo, Deng Ming, Wen Zhenhe, et al. Experimental study of marine magnetotellurics in south Huanghai[J]. Chinese Journal of Geophysics, 2009, 52(3): 740-749. [5] Zhang X, Kang X, Chen X, et al. Measurement of far field magnetic moment vector of a moving ferromagnetic object[J]. IEEE Sensors Journal, 2020, 20(18): 10903-12. doi: 10.1109/JSEN.2020.2994353 [6] Ginzburg B, Frumkis L, Kaplan B Z. Processing of magnetic scalar gradiometer signals using orthonormalized functions[J]. Sensors and Actuators A-Physical, 2002, 102(1/2): 67-75. [7] 杨少伟, 鞠建波, 郁红波. 基于OBF检测器磁探仪搜潜效能评估[J]. 舰船电子工程, 2020, 40(12): 5. doi: 10.3969/j.issn.1672-9730.2020.12.002Yang Shaowei, Ju Jianbo, Yu Hongbo. Evaluation of potential searching performance based on OBF detector[J]. Ship Electronic Engineering, 2020, 40(12): 5. doi: 10.3969/j.issn.1672-9730.2020.12.002 [8] 张坚, 林春生, 邓鹏, 等. 非高斯背景噪声下的微弱磁异常信号检测算法[J]. 海军工程大学学报, 2011, 23(4): 5. doi: 10.3969/j.issn.1009-3486.2011.04.005Zhang Jian, Lin Chunsheng, Deng Peng, et al. Detection of weak magnetic anomaly signal in non-Gaussian noise background[J]. Journal of Naval University of Engineering, 2011, 23(4): 5. doi: 10.3969/j.issn.1009-3486.2011.04.005 [9] 张坚, 林春生, 邓鹏, 等. 基于小波域OBF分解的磁异常信号检测算法[J]. 弹箭与制导学报, 2011, 31(6): 187-189, 196. doi: 10.3969/j.issn.1673-9728.2011.06.055Zhang Jian, Lin Chunsheng, Deng Peng, et al. Detection of magnetic anomaly signal based on OBF decomposition in wavelet domain[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(6): 187-189, 196. doi: 10.3969/j.issn.1673-9728.2011.06.055 [10] 张坚, 林春生, 黄凡. OBF分解与BP网络在船舶磁场信号检测中的应用[J]. 船电技术, 2011, 31(7): 13-16. doi: 10.3969/j.issn.1003-4862.2011.07.004Zhang Jian, Lin Chunsheng, Huang Fan. Application of OBF decomposition and BP neural network to magnetic signal detection of a ship[J]. Marine Electric & Electronic Engineering, 2011, 31(7): 13-16. doi: 10.3969/j.issn.1003-4862.2011.07.004 [11] 向前, 林春生, 龚沈光. 基于小波包变换的非高斯噪声信号结构分析[J]. 电子与信息学报, 2004, 26(1): 60-64.Xiang Qian, Lin Chunsheng, Gong Shenguang. Analysis of non-Gaussian noise signal structure based on wavelet packet transform[J]. Journal of Electronics & Information Technology, 2004, 26(1): 60-64. [12] Reham W, Amr H, Mahmoud A. Performance enhancement of MIMO detectors using wavelet denoising filters[J]. International Journal of Engineering & Technology, 2016, 5(4): 131-134. [13] Sun L, Zhao S, Shen Y, et al. A performance improved ACFM-TMR detection system with trade off denoising algorithm[J]. Journal of Magnetism and Magnetic Materials, 2021, 527: 167756. doi: 10.1016/j.jmmm.2021.167756