Quality Control of Ocean Observation Data Based on Wave Glider
-
摘要: 观测数据的准确性和可信度是波浪滑翔器数据质量控制的核心, 有效的数据质量控制方法是波浪滑翔器观测数据推广应用必不可少的技术手段。为提升波浪滑翔器观测数据质量, 文中以气温和气压数据为例, 提出一种新型海洋观测数据质量控制方法, 该方法包括数据检验和数据修正环节:数据检验通过范围检验和尖峰检验对波浪滑翔器观测数据进行异常值剔除;数据修正采用反向传播(BP)神经网络算法对检验后的观测数据进行数据修正, 提升观测数据整体准确性。利用“黑珍珠”波浪滑翔器集成的AIRMAR-BP200和GILL-GMX600气象传感器进行比对试验并获取大量数据样本, 将该样本数据用于BP神经网络模型训练。同时, 为验证所提出的数据质量控制方法的有效性, 对“黑珍珠”波浪滑翔器海上试验获取的观测数据进行数据质量控制和分析, 结果表明文中提出的数据质量控制方法可有效提高观测数据的准确性。Abstract: The accuracy and reliability of observation data form the core of data quality control for wave gliders. An effective data quality control method is essential to promote the popularization and application of wave glider observation data. To improve the data quality of a wave glider, a new marine observation data quality control method with data inspection and data correction algorithms was developed, considering air temperature and pressure data as examples. Data inspection includes range and peak inspection, and abnormal values of the observation data are eliminated. A backpropagation(BP) neural network algorithm was adopted to correct the inspected observation data and improve the overall accuracy. In the early stage, sea trials were conducted with the “Black Pearl” wave glider-integrated AIRMAR-BP200 and GILL-GMX600 meteorological sensors, and a large number of data samples were obtained for BP neural network model training. Meanwhile, to verify the effectiveness of the proposed data quality control method, a sea trial was conducted, and the observation data obtained from the “Black Pearl” wave glider were analyzed. The experimental results show that the proposed data quality control method can effectively improve the accuracy of the observation data.
-
Key words:
- wave glider /
- data quality control /
- BP neural network /
- ocean observation
-
表 1 “黑珍珠”波浪滑翔器指标参数
Table 1. The specifications of the“Black Pearl”wave glider
项目 技术指标 平台质量 双体结构总质量80 kg 平台尺寸 水面母船: 2.2 m×0.6 m×0.3 m;
水下牵引机: 2.2 m×1.2 m×0.5 m续航能力 最大航行距离>1×104 km; 连续工作时间>1年 风浪等级 可以抵抗12级台风, 最大可生存浪高10 m 定位精度 3级海况(海流<0.5 kn): 24 h内虚拟锚泊定点误差<200 m半径概率≥50%; 24 h内直线路径跟踪偏差<200 m概率≥80% 发电功率 峰值发电功率≈90 W, 长期平均功率≥12 W 蓄电储备 连续无光工作时间7天 表 2 气象参数比对
Table 2. Comparison of meteorological parameters
传感器 参数 范围 精度 AIRAMR-PB200 气温/℃ −40 ~55 ±1.1 气压/mbar 300~1 100 ±1 GILL-GMX600 气温/℃ −40~70 ±0.3 气压/mbar 300~1 100 ±0.5 表 3 气温与气压数据量化比对
Table 3. Quantitative comparison of air temperature and air pressure data
参数 状态 平均
偏差中位数偏差 标准差 稳健
标准差气压 修正前 −0.002 8 −0.003 1 0.001 4 1.8×10−6 修正后 6.4×10−4 4.2×10−4 0.001 3 1.7×10−6 气温 修正前 1.397 7 1.454 3 0.473 7 0.2244 修正后 −0.094 5 −0.060 3 0.420 4 0.1767 -
[1] Hine R, Willcox S, Hine G, et al. The wave glider: A wave-powered autonomous marine vehicle[C]//Proceedings MTS/IEEE oceans 2009. Biloxi, MS, USA: IEEE, 2009: 26-29. [2] Liu F, Liu Y, Sun X, et al. A new multi-sensor hierarchical data fusion algorithm based on unscented Kalman filter for the attitude observation of the wave glider[J]. Applied Ocean Research, 2021, 109: 1-14. [3] Sun X, Zhou Y, Sang H, et al. Adaptive path following control for wave gliders in time-varying environment[J]. Ocean Engineering, 2020, 218: 1-14. [4] 孙秀军, 桑宏强, 李灿, 等. “黑珍珠”波浪滑翔器研发综述[J]. 海洋科学, 2020, 44(12): 107-114. [5] 桑宏强, 游宇嵩, 孙秀军. 波浪滑翔器网络版岸基监控中心设计[J]. 水下无人系统学报, 2019, 27(5): 521-528. [6] 孙秀军, 王雷, 桑宏强. “黑珍珠”波浪滑翔器南海台风观测应用[J]. 水下无人系统学报, 2019, 27(5): 562-569. [7] 桑宏强, 李灿, 孙秀军. 波浪滑翔器纵向速度与波浪参数定量分析[J]. 水下无人系统学报, 2018, 26(1): 16-22. [8] 谭哲韬, 张斌, 吴晓芬, 等. 海洋观测数据质量控制技术研究现状及展望[J]. 中国科学: 地球科学, 2021, 52(3): 1-20. [9] 沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106. [10] 钱洪宝, 卢晓亭. 我国水下滑翔机技术发展建议与思考[J]. 水下无人系统学报. 2019, 27(5): 474-479. [11] Wang Y H, Luo C Y, Yang S Q, et al. Modified thermal lag correction of CTD data from underwater gliders[J]. Journal of Coastal Research, 2020, 99(sp1): 137-143. doi: 10.2112/SI99-020.1 [12] 任焕萍, 张斌, 谭哲韬, 等. 一种精细化的海洋浮标数据质量控制方法[J]. 海洋科学, 2021, 45(10): 93-103.Ren Huanping, Zhang Bin, Tan Zhetao, et al. A new quality control scheme for marine buoy temperature and salinity data[J]. Marine Science, 2021, 45(10): 93-103. [13] 李涛, 张灿, 张帅驰, 等. 基于兴趣度关联规则的海洋气象数据质控算法[J]. 现代电子技术, 2018, 41(22): 138-142.Li Tao, Zhang Can, Zhang Shuaichi, et al. Marine meteorological data quality control algorithm based on interestingness association rule[J]. Modern Electronics Technique, 2018, 41(22): 138-142. [14] 陈子飞, 任强, 南峰, 等. 深海锚系潜标ADCP数据处理的质量控制研究[J]. 海洋技术学报, 2021, 40(4): 54-61.Chen Zifei, Ren Qiang, Nan Feng, et al. Research on the quality control of ADCP Data processing for deep-ocean subsurface mooring[J]. Journal of Ocean technology, 2021, 40(4): 54-61. [15] 国家海洋标准计量中心. GB/T 14914.6—2021海洋观测规范第6部分: 数据处理与质量控制[S]. 北京: 国家标准化管理委员会, 2021. [16] Thomson J, Girton J B, Rajesh J, et al. Measurements of directional wave spectra and wind stress from a wave glider autonomous surface vehicle[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35(2): 347-362. [17] 王冠琳, 王岩峰, 官晟. 水下滑翔机数据管理[J]. 水下无人系统学报, 2019, 27(5): 514-520.Wang Guanlin, Wang Yanfeng, Guan Sheng. Data management of underwater gliders: A review[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 514-520. [18] Wang B L, Gu X D, Ma L, et al. Temperature error correction based on BP neural network in meteorological wireless sensor network[J]. International Journal of Sensor Networks, 2017, 23(4): 117-132. [19] 侯飙. 气象数据质量控制与监控系统的研究与设计[D]. 哈尔滨: 哈尔滨工程大学, 2017. [20] 韩格格, 黄艳红, 姜娜娜, 等. 基于改进Apriori算法的气象数据质量控制研究[J]. 电子测试, 2021, 5: 63-64. doi: 10.3969/j.issn.1000-8519.2021.05.022Han Gege, Huang Yanhong, Jiang Nana, et al. Research on quality control of meteorological data based on improved apriori algorithm[J]. Electronic Test, 2021, 5: 63-64. doi: 10.3969/j.issn.1000-8519.2021.05.022 [21] 李超, 宁春林, 刘宝超, 等. 南海南部季风的自动气象站观测系统设计[J]. 海岸工程, 2016, 35(4): 42-50. doi: 10.3969/j.issn.1002-3682.2016.04.005Li Chao, Ning Chunlin, Liu Baochao, et al. Design of automatic weather station observation system for monsoon in the southern South China Sea[J]. Coastal Engineering, 2016, 35(4): 42-50. doi: 10.3969/j.issn.1002-3682.2016.04.005