Acoustic Performance Prediction of Undersea Vehicles
-
摘要: 随着深海捕捞和海洋牧场的发展, 运载器水下辐射噪声对鱼类等海洋生物的影响不可忽视。为评估水下运载器的辐射噪声对海洋生物的影响, 根据被动声呐方程和水下辐射噪声传播损失特性建立了运载器的安全工作半径计算模型, 量化了水下运载器的安全工作区域。以商用水下运载器G1和对动力系统进行了声学优化设计的G2为研究对象, 在声学性能试验的基础上分析了2种运载器的声辐射特性, 进一步分别计算、对比了2种运载器与海洋鱼类和水下设备之间的安全工作半径。研究表明, 运载器的辐射噪声由宽频噪声和线谱噪声组成, 低频线谱噪声是影响运载器声学性能的主要因素, 优化动力系统有效改进了运载器的安全工作半径, 降低了其对海洋生物的影响。文中工作可为海洋声学牧场的商用运载器声学性能评估及优化提供参考。Abstract: With the development of deep-sea fishing and marine ranching, the impact of undersea radiation noise of vehicles on marine organisms such as fish cannot be ignored . In order to assess the impact of radiation noise from undersea vehicles on marine life, the calculation model of safe working radius for an undersea vehicle was established according to the passive sonar equation and propagation loss characteristics of undersea radiation noise, and the safe working area of undersea vehicles was quantified. Two kinds of commercial undersea vehicles G1 and G2 with acoustic optimization design for the power system were studied. Based on the acoustic performance test, the acoustic radiation characteristics of the two vehicles were analyzed, and the safe working radius between the two undersea vehicles and marine fish as well as undersea equipment were further calculated. The research shows that the radiated noise of the vehicles consists of broadband noise and line spectrum noise, and the line spectrum noise within the low-frequency range is the main factor affecting the acoustic performance of undersea vehicles. The safe working radius of the undersea vehicles is effectively improved by optimizing the power system, thus reducing its impact on marine life. The results of this study provide a reference for the evaluation and optimization of the acoustic performance of commercial vehicles in marine acoustic ranch.
-
表 1 G1线谱噪声SNR
Table 1. Signal-to-noise ratio of line spectrum noise of vehicle G1
频点 SNR/dB 频点 SNR/dB ${f_{{\text{1 - 1}}}}$ 37.9 ${f_{{\text{1 - 4}}}}$ 60.2 ${f_{{\text{1 - 2}}}}$ 52.9 ${f_{{\text{1 - 5}}}}$ 68.6 ${f_{{\text{1 - 3}}}}$ 60.1 ${f_{{\text{1 - 6}}}}$ 64.3 表 2 G2线谱噪声SNR
Table 2. Signal-to-noise ratio of line spectrum noise of vehicle G2
频点 SNR/dB 频点 SNR/dB ${f_{2{\text{ - 1}}}}$ 28.9 ${f_{2{\text{ - 5}}}}$ 51.7 ${f_{2{\text{ - 2}}}}$ 30.8 ${f_{2{\text{ - 6}}}}$ 58.4 ${f_{2{\text{ - 3}}}}$ 49.4 $ {f_{2{\text{ - }}7}} $ 85.3 ${f_{2{\text{ - 4}}}}$ 55.2 -
[1] 宋保维, 潘光, 张立川, 等. 自主水下航行器发展趋势及关键技术[J]. 中国舰船研究, 2022, 17(5): 27-44. doi: 10.19693/j.issn.1673-3185.02939Song Baowei, Pan Guang, Zhang Lichuan, et al. Development trend and key technologies of autonomous underwater vehicles[J]. Chinese Journal of Ship Research, 2022, 17(5): 27-44. doi: 10.19693/j.issn.1673-3185.02939 [2] 王胜男, 阿达依·谢尔亚孜旦, 章翔峰, 等. 考虑轴柔性的二级齿轮减速器振动噪声研究[J]. 西安交通大学学报, 2020, 54(9): 117-127.Wang Shengnan, Adayi Xieeryazidan, Zhang Xiangfeng, et al. Vibration and noise analysis for two-stage gear reducer considering shaft flexibility[J]. Journal of Xi’an Jiaotong University, 2020, 54(9): 117-127. [3] Smith T A, Rigby J. Underwater radiated noise from marine vessels: A review of noise reduction methods and technologys[J]. Ocean Engineering, 2022, 126: 488-500. [4] Xu W W, Wang Q G, Wu D Z, et al. Simulation and design improvement of a low noise control valve in autonomous underwater vehicles[J]. Applied Acoustics, 2019, 146: 23-30. doi: 10.1016/j.apacoust.2018.10.019 [5] Putland R L, Merchant N D, Farcas A, et al. Vessel sound cuts down communication space for vocalising fish and marine mammals[J]. The Journal of the Acoustical Society of America, 2018, 143(3): 1898. [6] 梁旭方. 鱼类侧线机械感觉猎物识别和定位的研究进展[J]. 动物学杂志, 1998, 33(2): 49-52. doi: 10.3969/j.issn.0250-3263.1998.02.017Liang Xufang. Research progress in recognition and location of fish prey by lateral mechanosensory[J]. Chinese Journal of Zoology, 1998, 33(2): 49-52. doi: 10.3969/j.issn.0250-3263.1998.02.017 [7] Karen D J, Forland T N, Amorim M C, et al. Predicting the effects of anthropogenic noise on fish reproduction[J]. Reviews in Fish Biology and Fisheries, 2020, 30(2): 245-268. doi: 10.1007/s11160-020-09598-9 [8] Zhang F, Zhu L F, Shi X T, et al. Influence of pump noise on the health of fish in a large pumping station[J]. Journal of Hydrodynamics, 2022, 34(3): 522-531. doi: 10.1007/s42241-022-0033-4 [9] 汤智胤, 姜荣俊, 何琳. 潜艇声隐身态势评估方法研究[J]. 武汉理工大学学报(交通科学与工程版), 2007, 31(1): 17-20.Tang Zhiyin, Jiang Rongjun, He Lin. Study on method of evaluating acoustic stealth situation of submarine[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2007, 31(1): 17-20. [10] 邓博文, 朱翔, 李天匀, 等. 不同模型及不同载荷形式对单层圆柱壳声振特性的影响分析[J]. 舰船科学技术, 2015, 37(12): 13-17.Deng Bowen, Zhu Xiang, Li Tianyun, et al. Effects of different models and driving forces on vibroacoustic characteristic of single cylinder shell[J]. Ship Science and Technology, 2015, 37(12): 13-17. [11] 杨忠超, 楼京俊, 孙炯, 等. 水下航行器推进器-轴系-壳体系统声振特性研究[J]. 舰船科学技术, 2017, 39(12): 30-35.Yang Zhongchao, Lou Jingjun, Sun Jiong, et al. Research of vibration and acoustic traits of underwater vehicle's propeller-shaft-hull system[J]. Ship Science and Technology, 2017, 39(12): 30-35. [12] 张卿冕, 肖正明. 水下航行器流场特性与辐射噪声数值研究[J]. 机械科学与技术, 2022, 41(6): 833-839.Zhang Qingmian, Xiao Zhengming. Numerical study of flow field characteristics and radiation noise of underwater vehicle[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(6): 833-839. [13] Qu Y G, Su J P, Hua H X, et al. Structural vibration and acoustic radiation of coupled propeller-shafting and submarine hull system due to propeller forces[J]. Journal of Sound and Vibration, 2017, 401: 76-93. doi: 10.1016/j.jsv.2017.03.034 [14] 曹浩, 文立华, 王志杰, 等. 水下航行器动力装置动力学特性研究[J]. 水下无人系统学报, 2019, 27(6): 673-679.Cao Hao, Wen Lihua, Wang Zhijie, et al. Dynamic characteristics of undersea vehicle power plant[J]. Journal of Unmanned Undersea Systems, 2019, 27(6): 673-679. [15] Song Y B, Wen J H, Yu D L, et al. Reduction of vibration and noise radiation of an underwater vehicle due to propeller forces using periodically layered isolators[J]. Journal of Sound and Vibration, 2014, 333(14): 3031-3043. doi: 10.1016/j.jsv.2014.02.002 [16] 张明, 马骁晨, 李建龙. 自主水下航行器自噪声控制及实验验证[J]. 舰船科学技术, 2020, 42(12): 146-149.Zhang Ming, Ma Xiaochen, Li Jianlong. Autonomous underwater vehicle self-noise control and experimental validation[J]. Ship Science and Technology, 2020, 42(12): 146-149. [17] Zou M S, Jiang L W, Liu S X. Underwater acoustic radiation by structures arbitrarily covered with acoustic coatings[J]. Journal of Sound and Vibration, 2019, 443: 748-763. doi: 10.1016/j.jsv.2018.12.017 [18] 刘伯胜, 雷家煜. 水声学原理[M]. 2版. 哈尔滨: 哈尔滨工程大学出版社, 2010: 10-11. [19] Marsh H W, Schulkin M. Shallow-water transmission[J]. Journal of the Acoustical Society of America, 1962, 34(6): 863-864. doi: 10.1121/1.1918212 [20] Guo Y H, Ai R F, Chen Y C, et al. Prediction of passive sonar detection range in different detection probability[C]//2018 International Conference on Systems and Informatics. Nanjing: IEEE, 2018: 1289-1293. [21] Thorp W H. Analytic description of the low-frequency attenuation coefficient[J]. The Journal of the Acoustical Society of America, 1967, 42(1): 270. [22] 中国船舶工业总公司. 舰船水下辐射噪声测量方法: GJB 273-87 [S]. 北京: 国防科学技术工业委员会, 1987. [23] 徐园园, 王明洲, 蒋继军, 等. 基于声散射模型的鱼雷自噪声特性分析及仿真预报[J]. 鱼雷技术, 2013, 21(2): 105-109.Xu Yuanyuan, Wang Mingzhou, Jiang Jijun, et al. Characteristic analysis and prediction simulation of torpedo self-noise based on acoustic scattering model[J]. Torpedo Technology, 2013, 21(2): 105-109. [24] 刘滨, 刘新富, 张跃峰, 等. 珍珠龙胆石斑鱼听觉阈值研究[J]. 渔业现代化, 2019, 46(1): 6-12.Liu Bin, Liu Xinfu, Zhang Yuefeng, et al. Study on auditory thresholds of epinephelus fuscoguttatus[J]. Fishery Modernization, 2019, 46(1): 6-12.