• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向观测网络供电的水下能量捕获技术研究进展

张宇 王昊 相城 徐敏义

张宇, 王昊, 相城, 等. 面向观测网络供电的水下能量捕获技术研究进展[J]. 水下无人系统学报, 2023, 31(1): 86-107 doi: 10.11993/j.issn.2096-3920.2022-0088
引用本文: 张宇, 王昊, 相城, 等. 面向观测网络供电的水下能量捕获技术研究进展[J]. 水下无人系统学报, 2023, 31(1): 86-107 doi: 10.11993/j.issn.2096-3920.2022-0088
ZHANG Yu, WANG Hao, XIANG Cheng, XU Min-yi. Recent Progress on Underwater Energy Harvesting Technology for Powering Observation Networks[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 86-107. doi: 10.11993/j.issn.2096-3920.2022-0088
Citation: ZHANG Yu, WANG Hao, XIANG Cheng, XU Min-yi. Recent Progress on Underwater Energy Harvesting Technology for Powering Observation Networks[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 86-107. doi: 10.11993/j.issn.2096-3920.2022-0088

面向观测网络供电的水下能量捕获技术研究进展

doi: 10.11993/j.issn.2096-3920.2022-0088
基金项目: 国家自然科学基金(51979045, 52101382)
详细信息
    通讯作者:

    徐敏义(1984-), 男, 博士, 教授, 主要研究方向为海洋微纳能源与自驱动系统

  • 中图分类号: U667.3; TJ630.32

Recent Progress on Underwater Energy Harvesting Technology for Powering Observation Networks

  • 摘要: 水下立体观测网络通过实时获取水下环境、水下目标和水下活动等相关信息, 为国家海洋安全、深海能源与资源开发、海洋灾害预警预报等提供重要支撑。然而, 传统基于蓄电池供电的能量供给方式越来越难以满足水下观测网络长时间持续可靠工作需求。为提升水下观测网络的续航能力, 基于水下能量捕获的原位供电技术受到国内外广泛关注。海流能、波浪能具有分布广、持续性强、能量密度高等优势, 因此文中重点关注面向水下立体观测网络供能的海流能与波浪能捕获装置研究进展。根据能量转换方式的不同, 梳理了基于电磁发电、压电、摩擦纳米发电和混合式发电的水下能量捕获技术代表性工作, 对比总结了不同发电形式的优缺点。进一步展望了水下能量捕获技术发展趋势, 为水下观测网络实现原位供能提供了思路。

     

  • 图  1  水下观测网络

    Figure  1.  Underwater observation network

    图  2  部分水下装置能耗图

    Figure  2.  Energy consumption diagram of some underwater devices

    图  3  水下能量分布区域

    Figure  3.  The distribution of underwater energy

    图  4  不同海流流速所对应的能量密度

    Figure  4.  Power densities of different ocean current velocities

    图  5  水下能量利用方式

    Figure  5.  Methods of underwater energy utilization

    图  6  电磁发电机工作原理

    Figure  6.  Working principle of electromagnetic generators

    图  7  往复式电磁能量捕获装置

    Figure  7.  Reciprocating electromagnetic energy harvesting devices

    图  8  阵列化点吸收式波浪能捕获装置

    Figure  8.  Arrayed point wave energy harvesting devices

    图  9  低流速海流能发电装置

    Figure  9.  Low flow rate ocean current energy power generation device

    图  10  旋转式电磁俘能装置

    Figure  10.  Rotary electromagnetic energy harvesting device

    图  11  压电材料发电方式

    Figure  11.  Principle of the power generation of piezoelectric material

    图  12  “卡门涡街”效应

    Figure  12.  The Carmen vortex effect

    图  13  柔性压电薄膜在涡流应力场中的形变

    Figure  13.  Deformation of flexible piezoelectric films in vortex fields

    图  14  柔性压电装置

    Figure  14.  Flexible piezoelectric devices

    图  15  弹性悬臂梁压电能量捕获装置

    Figure  15.  Elastic cantilever piezoelectric devices

    图  16  TENG基本工作形式

    Figure  16.  Basic working modes of TENG

    图  17  水下柔性旗子与柔性海草TENG

    Figure  17.  UF-TENG and SW-TENG

    图  18  P-TENG“蜂箱”结构、工作原理及电能输出

    Figure  18.  The beehive structure, working principle and electric energy output of P-TENG

    图  19  独立层模式水下摩擦纳米发电装置

    Figure  19.  Underwater triboelectric nanogenerator

    图  20  仿生鱼型TENG与仿蝴蝶翅膀型TENG

    Figure  20.  FE-TENG and BBW-TENG

    图  21  混合型能量收集装置

    Figure  21.  Hybrid energy harvesting devices

    图  22  3种水下能量捕获装置工作原理与优缺点分析

    Figure  22.  Analysis of the working principles and advantages and disadvantages of three underwater energy harvesting devices

    图  23  水下能量捕获装置优缺点比对

    Figure  23.  Comparison diagram of characteristics of underwater energy harvesting devices

    图  24  我国沿海海域流速分布

    Figure  24.  Velocity distribution of current in Chinese coastal sea

    图  25  我国沿海海域有效波高

    Figure  25.  Significant height of wave in Chinese coastal sea

    图  26  水下TENG网络

    Figure  26.  The underwater TENG network

    表  1  水下能量捕获装置参数列表

    Table  1.   Parameter list of underwater energy harvesting devices

    装置类型发电形式主要材料构成能量来源电能输出
    Faria研发的双线圈能量捕获装置[22] 电磁发电机 永磁铁、线圈 海流能、波浪能 海浪频率为0.4 Hz时发电功率达7.73 mW
    深海微流发电机[43] 电磁发电机 永磁铁、叶片 海流能 海流流速为1 m/s时功率可达200 W
    低流速海流能发电装置[44] 电磁发电机 海流能 额定流速为1 m/s时额定功率500 W
    Cario设计的海流能捕获装置[48] 电磁发电机 永磁铁、叶片 海流能 海流流速为1 kn时输出功率为4 W
    仿生鳗鱼压电装置[39] 压电发电机 PVDF 海流能 在1 m/s的海流下可产生1 W功率
    Mutsuda所研发的FPED装置[63] 压电发电机 PVDF 波浪能、海流能 功率密度可达0.7 mW/m2
    VIPEC[64] 压电发电机 海流能 最大输出电压达2.3 mV, 最大功率密度0.035 μW/m3
    直立悬臂梁结构压电能量捕获装置[66] 压电发电机 波浪能 最高功率达55 W
    UF-TENG[76] 摩擦纳米发电机 FEP薄膜、PTFE薄膜等 海流能 流速在0.133 m/s下功率达10 μW
    SW-TENG[30] 摩擦纳米发电机 FEP薄膜、PTFE薄膜等 波浪能 波浪频率1 Hz时功率达64.4 μW
    BBW-TENG[81] 摩擦纳米发电机 PTFE球、铜电极等 波浪能 1.25 Hz的波浪频率下功率达1 160 μW
    WPHG混合型能量捕获装置[89] 电磁发电机、摩擦纳米发电机 永磁铁、FEP膜、铜电极等 海流能 在1 600 r/min的转速下, 功率达11.5 mW
    下载: 导出CSV
  • [1] 马蕊, 赵修涛, 柳存根. 海洋水下立体观测技术装备发展研究[J]. 中国工程科学, 2020, 22(6): 19-25.

    Ma Rui, Zhao Xiu-tao, Liu Cun-gen. Development of Marine Equipment for Underwater Stereoscopic Observation[J]. Strategic Study of Chinese Academy of Engineering, 2020, 22(6): 19-25.
    [2] 陈建冬, 张达, 王潇, 等. 海底观测网发展现状及趋势研究[J]. 海洋技术学报, 2019, 38(6): 19-25.

    Chen Jian-dong, Zhang Da, Wang Xiao, et al. Research on the State-of-the-Art and Trends of Seafloor Observatory[J]. Journal of Ocean Technology, 2019, 38(6): 19-25.
    [3] 罗续业, 李彦. 我国海洋水下观测网发展战略思考[J]. 海洋学研究, 2016, 34(3): 1-5.

    Luo Xu-ye, Li Yan. Thinking of Development Strategy on Undersea Observation Network in China[J]. Journal of Marine Sciences, 2016, 34(3): 1-5.
    [4] 李风华, 路艳国, 王海斌, 等. 海底观测网的研究进展与发展趋势[J]. 中国科学院院刊, 2019, 34(3): 321-330. doi: 10.16418/j.issn.1000-3045.2019.03.010

    Li Feng-hua, Lu Yan-guo, Wang Hai-bin, et al. Research Progress and Development Trend of Seafloor Observation Network[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3): 321-330. doi: 10.16418/j.issn.1000-3045.2019.03.010
    [5] Muhammad K, Zahid U, Naveed A, et al. A Survey of Routing Issues and Associated Protocols in Underwater Wireless Sensor Networks[J]. Journal of Sensors, 2017, 2017: 7539751.
    [6] Awan K M, Shah P A, Iqbal K, et Al. Underwater Wireless Sensor Networks: A Review of Recent Issues and Challenges[J]. Wireless Communications and Mobile Computing, 2019, 2019: 6470359.
    [7] Blidberg D R, Turner R M, Chappell S G. Autonomous Underwater Vehicles: Current Activities and Research Opportunities[J]. Robotics and Autonomous Systems, 1991, 7(2-3): 139-150. doi: 10.1016/0921-8890(91)90038-M
    [8] Tian Z, Su L, Wang H Y, et al. Underwater Self-Powered All-Optical Wireless Ultrasonic Sensing, Positioning and Communication with Ultrafast Response Time and Ultrahigh Sensitivity[J]. Advanced Optical Materials, 2022, 10(5): 1-9.
    [9] 徐文, 李建龙, 李一平, 等. 无人潜水器组网观测探测技术进展与展望[J]. 前瞻科技, 2022, 1(2): 60-78.

    Xu Wen, Li Jian-Long, Li Yi-Ping, et al. Networks of Unmanned Underwater Vehicles for Ocean Exploration: Advances and Prospects[J]. Science and Technology Foresight, 2022, 1(2): 60-78.
    [10] Xu G B, Shi Y J, Sun X Y, et al. Internet of Things in Marine Environment Monitoring: A Review[J]. Sensors (Switzerland), 2019, 19(7): 1-21.
    [11] 李红志, 闫晨阳, 贾文娟. 海洋温盐深传感器技术自主创新与产业发展的几点思考[J]. 水下无人系统学报, 2021, 29(3): 249-256.

    Li Hong-Zhi, Yan Chen-Yang, Jia Wen-Juan. Some Thoughts on Independent Innovation and Industrial Development of Ocean CTD Seneor Technology[J]. Journal of Unmanned Undersea Systems, 2021, 29(3): 249-256.
    [12] Zhao T C, Xu M Y, Xiao X, et al. Recent Progress in Blue Energy Harvesting for Powering Distributed Sensors in Ocean[J]. Nano Energy, 2021, 88: 106199. doi: 10.1016/j.nanoen.2021.106199
    [13] 康帅, 俞建成, 张进. 微小型自主水下机器人研究现状[J]. 机器人, 2022, 17(2): 1-20. doi: 10.3969/j.issn.1002-0446.2022.1.jqr202201001

    Kang Shuai, Yu Jian-cheng, Zhang Jin. Research Status of Micro Autonomous Underwater Vehicle[J]. Robot, 2022, 17(2): 1-20. doi: 10.3969/j.issn.1002-0446.2022.1.jqr202201001
    [14] Song Y, Wang Y H, Yang S Q, et al. Sensitivity Analysis and Parameter Optimization of Energy Consumption for Underwater Gliders[J]. Energy, 2020, 191: 116506. doi: 10.1016/j.energy.2019.116506
    [15] 戴国群, 丁星胜, 唐俊, 等. 海洋潜标新型电源系统研制[J]. 电源技术, 2017, 41(6): 932-934. doi: 10.3969/j.issn.1002-087X.2017.06.033

    Dai Guo-Qun, Ding Xing-Sheng, Tang Jun, et al. Development of New Power System for Submerged Buoy[J]. Chinese Journal of Power Sources, 2017, 41(6): 932-934. doi: 10.3969/j.issn.1002-087X.2017.06.033
    [16] Howe B M, Chao Y, Arabshahi C, et al. A Smart Sensor Web for Ocean Observation: Fixed and Mobile Platforms, Integrated Acoustics, Satellites and Predictive Modeling[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(4): 507-521. doi: 10.1109/JSTARS.2010.2052022
    [17] Webb D C, Simonetti P J, Jones C P, et al. SLOCUM: An Underwater Glider Propelled by Environmental Energy[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 447-452. doi: 10.1109/48.972077
    [18] Hu Y L, Wang J J. Study on Power Generation and Energy Storage System of a Solar Powered Autonomous Underwater Vehicle(SAUV)[J]. Energy Procedia, 2012, 16: 2049-2053. doi: 10.1016/j.egypro.2012.01.311
    [19] Sergiienko N Y, Rafiee A, Cazzolato B S, et al. Feasibility Study of the Three-Tether Axisymmetric Wave Energy Converter[J]. Ocean Engineering, 2018, 150: 221-233. doi: 10.1016/j.oceaneng.2017.12.055
    [20] Khan N, Kalair A, Abas N, et al. Review of Ocean Tidal, Wave and Thermal Energy Technologies[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 590-604. doi: 10.1016/j.rser.2017.01.079
    [21] 刘翔宇, 王岩, 王昊, 等. 基于柔性摩擦纳米发电机的水下能量收集技术研究[J]. 水下无人系统学报, 2022, 30(5): 543-549.

    Liu Xiang-Yu, Wang Yan, Wang Hao, et al. Research on Flexible Triboelectric Nanogenerator for Underwater Energy Harvesting[J]. Journal of Unmanned Undersea Systems, 2022, 30(5): 543-549.
    [22] Faria C L, Martins M S, Matos T, et al. Underwater Energy Harvesting to Extend Operation Time of Submersible Sensors[J]. Sensors, 2022, 22(4): 1341. doi: 10.3390/s22041341
    [23] Zhang B S, Li B Y, Fu S, et al. Vortex-Induced Vibration (VIV) Hydrokinetic Energy Harvesting Based on Nonlinear Damping[J]. Renewable Energy, 2022, 195: 1050-1063. doi: 10.1016/j.renene.2022.06.102
    [24] Wang J, Wu Z, Dong H, et al. Development and Control of Underwater Gliding Robots: A Review[J]. IEEE Journal of Automatica Sinica, 2022, 9(9): 1543-1560. doi: 10.1109/JAS.2022.105671
    [25] 王国晖, 杨亚楠, 王延辉, 等. 海洋温差能供电水下滑翔机的液电转换过程建模与效率分析[J]. 水下无人系统学报, 2021, 29(4): 451-458.

    Wang Guo-Hui, Yang Ya-Nan, Wang Yan-Hui, et al. Modeling and Efficiency Analysis of the Hydro-Electric Conversion Process of Underwater Glider Powered by Ocean Thermal Energy[J]. Journal of Unmanned Undersea Systems, 2021, 29(4): 451-458.
    [26] Bryden I G, Couch S J. ME1-Marine Energy Extraction: Tidal Resource Analysis[J]. Renewable Energy, 2006, 31(2): 133-139. doi: 10.1016/j.renene.2005.08.012
    [27] Chen H, Aït-Ahmed N, Zaïm E H, et al. Marine Tidal Current Systems: State of the Art[J]. IEEE International Symposium on Industrial Electronics, 2012: 1431-1437.
    [28] Chen H, Tang T H, Aït-Ahmed N, et al. Attraction, Challenge and Current Status of Marine Current Energy[J]. IEEE Access, 2018, 6: 12665-12685. doi: 10.1109/ACCESS.2018.2795708
    [29] Falnes J. A Review of Wave-Energy Extraction[J]. Marine Structures, 2007, 20(4): 185-201. doi: 10.1016/j.marstruc.2007.09.001
    [30] Wang Y, Liu X Y, Wang Y W, et al. Flexible Seaweed-Like Triboelectric Nanogenerator as a Wave Energy Harvester Powering Marine Internet of Things[J]. ACS Nano, 2021, 15(10): 15700-15709. doi: 10.1021/acsnano.1c05127
    [31] Polinder H, Damen M E C, Gardner F. Linear PM Generator System for Wave Energy Conversion in the AWS[J]. IEEE Transactions on Energy Conversion, 2004, 19(3): 583-589. doi: 10.1109/TEC.2004.827717
    [32] Polinder H, Damen M E C, Gardner F. Design, Modelling and Test Results of The AWS PM Linear Generator[J]. European Transactions on Electrical Power, 2005, 15(3): 245-256. doi: 10.1002/etep.56
    [33] Schubert B W, Robertson W S P, Cazzolato B S, et al. Linear and Nonlinear Hydrodynamic Models for Dynamics of a Submerged Point Absorber Wave Energy Converter[J]. Ocean Engineering, 2020, 197: 106828. doi: 10.1016/j.oceaneng.2019.106828
    [34] Li Y, Huang L, Tan P W, et al. Resonance Control Based on Hydrodynamic Analysis for Underwater Direct Drive Wave Energy Converter[J]. Journal of Marine Science and Engineering, 2021, 9(11): 1192. doi: 10.3390/jmse9111192
    [35] Tran N, Sergiienko N Y, Cazzolato B S, et al. The Impact of Pitch-Surge Coupling on the Performance of a Submerged Cylindrical Wave Energy Converter[J]. Applied Ocean Research, 2020, 104: 102377. doi: 10.1016/j.apor.2020.102377
    [36] Meng Q C, Zhang C W. Analytical Study on a Submerged Tubular Wave Energy Converter[J]. Renewable Energy, 2018, 118: 955-964. doi: 10.1016/j.renene.2017.10.110
    [37] Khan U, Kim S W. Triboelectric Nanogenerators for Blue Energy Harvesting[J]. ACS Nano, 2016, 10(7): 6429-6432. doi: 10.1021/acsnano.6b04213
    [38] Wang X, Wen Z, Guo H Y, et al. Fully Packaged Blue Energy Harvester by Hybridizing a Rolling Triboelectric Nanogenerator and an Electromagnetic Generator[J]. ACS Nano, 2016, 10(12): 11369-11376. doi: 10.1021/acsnano.6b06622
    [39] Taylor G W, Burns J R, Kammann S M, et al. The Energy Harvesting Eel: A Small Subsurface Ocean/River Power Generator[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 539-547. doi: 10.1109/48.972090
    [40] Xu L, Hasan M A M, Wu H T, et al. Electromagnetic–Triboelectric Hybridized Nanogenerators[J]. Energies, 2021, 14(19): 6219-6246. doi: 10.3390/en14196219
    [41] Gong Y, Yang Z B, Shan X B, et al. Capturing Flow Energy from Ocean and Wind[J]. Energies, 2019, 12(11): 1-22.
    [42] Chiu M C, Karkoub M, Her M G. Energy Harvesting Devices for Subsea Sensors[J]. Renewable Energy, 2017, 101: 1334-1347. doi: 10.1016/j.renene.2016.10.018
    [43] 田应元, 袁日, 李小涛. 深海微流发电系统设计及试验[J]. 太阳能学报, 2018, 39(4): 873-878.

    Tian Ying-yuan, Yuan Ri, Li Xiao-tao. Design and Test of Under Deep Sea Micro-flow Power Generation System[J]. Acta Energiae Solaris Sinica, 2018, 39(4): 873-878.
    [44] 祁长璞, 林勇刚, 赵建兴. 用于海洋仪器供电的低流速海流能发电技术研究[J]. 机电工程, 2017, 34(9): 1055-1059. doi: 10.3969/j.issn.1001-4551.2017.09.020

    Qi Chang-pu, Lin Yong-gang, Zhao Jian-xing. Ocean Current Power Generation at Low Flow Velocity for Oceanographic Instruments[J]. Journal of Mechanical Electrical Engineering, 2017, 34(9): 1055-1059. doi: 10.3969/j.issn.1001-4551.2017.09.020
    [45] 赵天祥, 高天德, 刘培洲, 等. 小功率海流能发电能量收集系统设计[J]. 电子设计工程, 2020, 28(24): 70-75. doi: 10.14022/j.issn1674-6236.2020.24.015

    Zhao Tian-xiang, Gao Tian-de, Liu Pei-zhou, et al. Design of Energy Harvesting System for Low-Power Ocean Current Power Generation[J]. Electronic Design Engineering, 2020, 28(24): 70-75. doi: 10.14022/j.issn1674-6236.2020.24.015
    [46] 闫枫, 付平, 熊学军. 深海潜标系统电池舱的设计与分析[J]. 机械制造, 2021, 50(1): 11-15.

    Yan Feng, Fu Ping, Xiong Xue-jun. Design and Analysis of Battery Compartment of Deep Sea Submersible Marking System[J]. Machinery, 2021, 50(1): 11-15.
    [47] Basagni St, Di V V, Gjanci P, et al. Harnessing Hydro: Harvesting-Aware Data Routing for Underwater Wireless Sensor Networks[C]//Proceedings of the International Symposium on Mobile ad Hoc Networking and Computing (Mobihoc). Los Angeles: ACM, 2018: 271-279.
    [48] Cario G, Casavola A, Gjanci P, et al. Long Lasting Underwater Wireless Sensors Network for Water Quality Monitoring in Fish Farms[C]//Oceans 2017-Aberdeen. Aberdeen, UK: IEEE, 2017: 1-6.
    [49] Ding W J, Song B W, Mao Z Y, et al. Experimental Investigations on a Low Frequency Horizontal Pendulum Ocean Kinetic Energy Harvester for Underwater Mooring Platforms[J]. Journal of Marine Science and Technology, 2016, 21(2): 359-367. doi: 10.1007/s00773-015-0357-7
    [50] Ding W J, Song B W, Mao Z Y, et al. Experimental Investigation on an Ocean Kinetic Energy Harvester for Underwater Gliders[C]//2015 IEEE Energy Conversion Congress and Exposition. Montreal, Canada: IEEE, 2015: 1035-1038.
    [51] 丁文俊, 宋保维, 毛昭勇, 等. 浅水域探测型无人水下航行器波浪能发电系统设计[J]. 机械工程学报, 2015, 51(2): 141-147. doi: 10.3901/JME.2015.02.141

    Ding Wen-jun, Song Bao-wei, Mao Zhao-yong, et al. Wave Energy Conversion System Design for Detection Unmanned Underwater Vehicle in Shallow Water[J]. Journal of Mechanical Engineering, 2015, 51(2): 141-147. doi: 10.3901/JME.2015.02.141
    [52] Li Z J. Low-Frequency Piezoelectric Energy Harvesting[D]. Toronto: University of Toronto, 2019.
    [53] Song H C, Kumar P, Maurya D, et al. Ultra-Low Resonant Piezoelectric MEMS Energy Harvester with High Power Density[J]. Journal of Microelectromechanical Systems, 2017, 26(6): 1226-1234. doi: 10.1109/JMEMS.2017.2728821
    [54] Hobeck J D. Energy Harvesting with Piezoelectric Grass for Autonomous Self-Sustaining Sensor Networks[D]. Michigan: University of Michigan, 2014.
    [55] Saadon S, Sidek O. Ambient Vibration-Based MEMS Piezoelectric Energy Harvester for Green Energy Source[J]. Journal of Optoelectronics and Advanced Materials, 2012, 66(5): 614-617.
    [56] Andosca R, Mcdonald T G, Genova V, et al. Experimental and Theoretical Studies on MEMS Piezoelectric Vibrational Energy Harvesters with Mass Loading[J]. Sensors and Actuators A: Physical, 2012, 178: 76-87. doi: 10.1016/j.sna.2012.02.028
    [57] 段利利, 邢健. 浅谈压电材料研究现状及发展趋势[J]. 山东工业技术, 2015(22): 271-274. doi: 10.16640/j.cnki.37-1222/t.2015.22.238
    [58] Wang Z L, Song J H. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays[J]. Science, 2006, 312(5771): 242-246. doi: 10.1126/science.1124005
    [59] Jbaily A, Yeung R W. Piezoelectric Devices for Ocean Energy: A Brief Survey[J]. Journal of Ocean Engineering and Marine Energy, 2015, 1(1): 101-118. doi: 10.1007/s40722-014-0008-9
    [60] Kim H M. Electroactive Polymers for Ocean Kinetic Energy Harvesting: Literature Review and Research Needs[J]. Journal of Ocean Engineering and Marine Energy, 2018, 4(4): 343-365. doi: 10.1007/s40722-018-0121-2
    [61] Sivadas V, Wickenheiser A M. A Study of Several Vortex-Induced Vibration Techniques for Piezoelectric Wind Energy Harvesting[J]. Active and Passive Smart Structures and Integrated Systems, 2011, 7977: 167-179.
    [62] Demori M, Ferrari M, Ferrari V, et al. Energy Harvesting from von Karman Vortices in Airflow for Autonomous Sensors[J]. Procedia Engineering, 2014, 87: 775-778. doi: 10.1016/j.proeng.2014.11.655
    [63] Mutsuda H, Tanaka Y, Patel R, et al. A Painting Type of Flexible Piezoelectric Device for Ocean Energy Harvesting[J]. Applied Ocean Research, 2017, 68: 182-193. doi: 10.1016/j.apor.2017.08.008
    [64] An X Y, Song B W, Tian W L, et al. Design and CFD Simulations of a Vortex-Induced Piezoelectric Energy Converter (VIPEC) for Underwater Environment[J]. Energies, 2018, 11(2): 330-344. doi: 10.3390/en11020330
    [65] Zurkinden A S. Wave Energy Converter Through Piezoelectric Polymers[C]//Proc. of the COMSOL Users Conference. Grenoble, France: Comsol Multiphysics, 2007.
    [66] Xie X D, Wang Q, Wu N. Potential of a Piezoelectric Energy Harvester from Sea Waves[J]. Journal of Sound and Vibration, 2014, 333(5): 1421-1429. doi: 10.1016/j.jsv.2013.11.008
    [67] Wang Z L. Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors[J]. ACS Nano, 2013, 7(11): 9533-9557. doi: 10.1021/nn404614z
    [68] Niu S M, Wang S H, Lin L, et al. Theoretical Study of Contact-Mode Triboelectric Nanogenerators as an Effective Power Source[J]. Energy and Environmental Science, 2013, 6(12): 3576-3583. doi: 10.1039/c3ee42571a
    [69] Wang Z L. On Maxwell’s Displacement Current for Energy and Sensors: The Origin of Nanogenerators[J]. Materials Today, 2017, 20(2): 74-82. doi: 10.1016/j.mattod.2016.12.001
    [70] 王中林. 摩擦纳米发电机[M]. 北京: 科学出版社, 2017.
    [71] 王中林, 邵佳佳. 非匀速运动介质系统中的动生麦克斯韦方程组——低速与非相对论近似[J]. 中国科学: 技术科学, 2022, 52(8): 1198-1211.

    Wang Zhong-lin, Shao Jia-jia. Maxwell’s Equations for a Mechano-Driven Varying-Speed-Motoin Media System under Slow Motion and Nonrelativistic Approximations[J]. Scientia Sinica(Technologica), 2022, 52(8): 1198-1211.
    [72] 王中林, 邵佳佳. 面向工程电磁学的动生麦克斯韦方程组及其求解方法[J]. 中国科学: 技术科学, 2022, 52(9): 1416-1433.

    Wang Zhong-Lin, Shao Jia-Jia. Maxwell’s Equations for a Mechano-Driven Varying-Speed-Motoin Media System for Engineering Electrodynamics and Their Solutions[J]. Scientia Sinica(Technologica), 2022, 52(9): 1416-1433.
    [73] Wang Z L. On the Expanded Maxwell’s Equations for Moving Charged Media System-General Theory, Mathematical Solutions and Applications in TENG[J]. Materials Today, 2022, 52: 348-363. doi: 10.1016/j.mattod.2021.10.027
    [74] Wang Z L. Maxwell’s Equations for a Mechano-Driven, Shape-Deformable, Charged-Media System, Slowly Moving at an Arbitrary Velocity Field V(R, T)[J]. Journal of Physics Communications, 2022, 6: 085013. doi: 10.1088/2399-6528/ac871e
    [75] Rodrigues C, Nunes D, Clemente D, et al. Emerging Triboelectric Nanogenerators for Ocean Wave Energy Harvesting: State of the Art and Future Perspectives[J]. Energy and Environmental Science, 2020, 13(9): 2657-2683. doi: 10.1039/D0EE01258K
    [76] Wang Y, Liu X Y, Chen T Y, et al. An Underwater Flag-Like Triboelectric Nanogenerator for Harvesting Ocean Current Energy under Extremely Low Velocity Condition[J]. Nano Energy, 2021, 90: 1-10.
    [77] Deng Z Z, Xu L, Qin H F, et al. Rationally Structured Triboelectric Nanogenerator Arrays for Harvesting Water-Current Energy and Self-Powered Sensing[J]. Advanced Materials, 2022, 34: 1-9.
    [78] Ahmed A. Self-Powered Wireless Sensing Platform for Monitoring Marine Life Based on Harvesting Hydrokinetic Energy of Water Currents[J]. Journal of Materials Chemistry A, 2022, 10(4): 1992-1998. doi: 10.1039/D1TA04861A
    [79] Jing Z X, Zhang J C, Wang J L, et al. 3D Fully-Enclosed Triboelectric Nanogenerator with Bionic Fish-Like Structure for Harvesting Hydrokinetic Energy[J]. Nano Research, 2022, 15(6): 5098-5104. doi: 10.1007/s12274-022-4131-y
    [80] Zhang S, Jing Z X, Wang X X, et al. Soft-Bionic-Fishtail Structured Triboelectric Nanogenerator Driven by Flow-Induced Vibration for Low-Velocity Water Flow Energy Harvesting[J/OL]. Nano Research.(2022-09-07)[2022-12-13]. https://doi.org/10.1007/s12274-022-4715-6.
    [81] Wang X X, Gao Q, Zhu M K, et al. Bioinspired Butterfly Wings Triboelectric Nanogenerator with Drag Amplification for Multidirectional Underwater-Wave Energy Harvesting[J]. Applied Energy, 2022, 323: 119648. doi: 10.1016/j.apenergy.2022.119648
    [82] Askari H, Saadatnia Z, Asadi E, et al. A Flexible Hybridized Electromagnetic-Triboelectric Multi-Purpose Self-Powered Sensor[J]. Nano Energy, 2018, 45: 319-329. doi: 10.1016/j.nanoen.2018.01.011
    [83] Zhang T T, Yang T, Zhang M, et al. Recent Progress in Hybridized Nanogenerators for Energy Scavenging[J]. Iscience, 2020, 23(11): 101689. doi: 10.1016/j.isci.2020.101689
    [84] Shao H Y, Wen Z, Cheng P, et al. Multifunctional Power Unit by Hybridizing Contact-Separate Triboelectric Nanogenerator, Electromagnetic Generator and Solar Cell for Harvesting Blue Energy[J]. Nano Energy, 2017, 39: 608-615. doi: 10.1016/j.nanoen.2017.07.045
    [85] Li Q Y, Liu W L, Yang H M, et al. Ultra-Stability High-Voltage Triboelectric Nanogenerator Designed by Ternary Dielectric Triboelectrification with Partial Soft-Contact and Non-Contact Mode[J]. Nano Energy, 2021, 90: 106585. doi: 10.1016/j.nanoen.2021.106585
    [86] Han K, Luo J J, Feng Y W, et al. Self-Powered Electrocatalytic Ammonia Synthesis Directly from Air as Driven by Dual Triboelectric Nanogenerators[J]. Energy and Environmental Science, 2020, 13(8): 2450-2458. doi: 10.1039/D0EE01102A
    [87] Yong S, Wang J Y, Yang L J, et al. Auto-Switching Self-Powered System for Efficient Broad-Band Wind Energy Harvesting Based on Dual-Rotation Shaft Triboelectric Nanogenerator[J]. Advanced Energy Materials, 2021, 11: 2101194. doi: 10.1002/aenm.202101194
    [88] Li X, Cao Y Y, Yu X, et al. Breeze-Driven Triboelectric Nanogenerator for Wind Energy Harvesting and Application in Smart Agriculture[J]. Applied Energy, 2022, 306: 117977. doi: 10.1016/j.apenergy.2021.117977
    [89] Guo H Y, Wen Z, Zi Y L, et al. A Water-Proof Triboelectric-Electromagnetic Hybrid Generator for Energy Harvesting in Harsh Environments[J]. Advanced Energy Materials, 2016, 6: 1501593. doi: 10.1002/aenm.201501593
    [90] Wang Y W, Qian Z A, Zhao C, et al. Highly Adaptive Triboelectric-Electromagnetic Hybrid Nanogenerator for Scavenging Flow Energy and Self-Powered Marine Wireless Sensing[J]. Advanced Materials Technologies, 2022, 8(4): 2201245.
    [91] Covaci C, Gontean A. Piezoelectric Energy Harvesting Solutions: a Review[J]. Sensors(Switzerland), 2020, 20(12): 1-37.
    [92] Wang Z L. Nanogenerators, Self-Powered Systems, Blue Energy, Piezotronics and Piezo-Phototronics-a Recall on the Original Thoughts for Coining These Fields[J]. Nano Energy, 2018, 54: 477-483. doi: 10.1016/j.nanoen.2018.09.068
    [93] Shen F, Li Z J, Guo H Y, et al. Recent Advances towards Ocean Energy Harvesting and Self-Powered Applications Based on Triboelectric Nanogenerators[J]. Advanced Electronic Materials, 2021, 7: 2100277. doi: 10.1002/aelm.202100277
    [94] Chen H M, Xing C, Li Y L, et al. Triboelectric Nanogenerators for a Macro-Scale Blue Energy Harvesting and Self-Powered Marine Environmental Monitoring System[J]. Sustainable Energy and Fuels, 2020, 4(3): 1063-1077. doi: 10.1039/C9SE01184F
    [95] Sun X, Shang C J, Ma H X, et al. A Tube-Shaped Solid–Liquid-Interfaced Triboelectric–Electromagnetic Hybrid Nanogenerator for Efficient Ocean Wave Energy Harvesting[J]. Nano Energy, 2022, 100: 107540. doi: 10.1016/j.nanoen.2022.107540
    [96] Yang H M, Deng M M, Zeng Q X, et al. Polydirectional Microvibration Energy Collection for Self-Powered Multifunctional Systems Based on Hybridized Nanogenerators[J]. ACS Nano, 2020, 14(3): 3328-3336. doi: 10.1021/acsnano.9b08998
    [97] Wang Z L, Jiang T, Xu L. Toward the Blue Energy Dream by Triboelectric Nanogenerator Networks[J]. Nano Energy, 2017, 39: 9-23. doi: 10.1016/j.nanoen.2017.06.035
  • 加载中
图(26) / 表(1)
计量
  • 文章访问数:  803
  • HTML全文浏览量:  530
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-07
  • 修回日期:  2023-02-01
  • 录用日期:  2023-02-07
  • 网络出版日期:  2023-02-15

目录

    /

    返回文章
    返回
    服务号
    订阅号