Vertical Launch Trajectory Modeling and Range Influence Law of Shipborne Depth Charge
-
摘要: 舰载深弹采用垂直发射后可大幅提高其平台适装性和作战效能, 对提高舰船作战能力具有重要意义。文中以某垂直冷发射深弹为原型, 根据垂直发射运动学及动力学方程, 建立深弹垂直发射弹道计算模型, 基于此模型分别考虑弹重、总冲、炮口初速、转弯高度、末端攻角、转弯结束时俯仰角、升力系数和阻力系数等影响因素, 对舰载深弹射程的影响进行计算分析。结果表明: 1) 射程与总冲、炮口初速、转弯高度、末端攻角及升力系数具有正相关性, 射程与弹重、转弯结束时俯仰角及阻力系数具有负相关性; 2) 弹重、总冲、炮口初速和转弯结束时俯仰角对深弹射程影响较大, 末端攻角、升力系数及阻力系数对深弹射程影响相对较小, 转弯高度对深弹射程几乎无影响。仿真结果可为深弹垂直发射总体及弹道设计提供参考。Abstract: The vertical launch of shipborne depth charge can greatly improve platform adaptability and combat effectiveness, which is of great significance in improving the combat capability of ships. This paper took a vertical cold launch depth charge as the prototype and set up a vertical launch trajectory calculation model of depth charge according to the vertical launch kinematics and dynamics equations. Based on this model, the paper considered the projectile mass, total impulse, initial muzzle velocity, turning height, terminal angle of attack, pitch angle at the end of turning, lift coefficient, drag coefficient, and other influence factors and calculated and analyzed the influence of shipborne depth charge range. The results show that: 1) The range is positively correlated with the total impulse, initial muzzle velocity, turning height, terminal angle of attack, and lift coefficient, while it is negatively correlated with the projectile mass, pitch angle at the end of turning, and drag coefficient; 2) the projectile mass, total impulse, initial muzzle velocity, and pitch angle at the end of turning have great influence on the depth charge range, while the terminal angle of attack, lift coefficient, and drag coefficient have relatively little influence on the depth charge range. In addition, the turning height has almost no influence on the depth charge range. The simulation results can provide a reference for the overall vertical launch and trajectory design of the depth charge.
-
Key words:
- depth charge /
- vertical launch /
- ballistic /
- range
-
表 1 弹道初始条件
Table 1. Initial condition of ballistic
弹重
倍数总冲
倍数初速
/(m/s)转弯高
度/m攻角
/(°)俯仰角
/(°)阻力系
数倍数升力系
数倍数1 1 30 20 2 47 1 1 表 2 标准弹道主要参数
Table 2. The main parameters of standard trajectory
射程/m 高度/m 末速/(m/s) 落角/(°) 飞行时间/s 3 416 1 155 172.2 −51.5 34.0 表 3 弹重对弹道影响
Table 3. Effect of the mass of depth charge on trajectory
弹重倍数 射程/m 高度/m 末速/(m/s) 落角/(°) 飞行时间/s 0.95 3 817 1 279 178.6 −51.2 36.1 1.00 3 416 1 155 172.2 −51.5 34.0 1.05 3 073 1 052 166.0 −51.8 32.3 1.10 2 779 965 160.2 −52.3 30.8 表 4 深弹总冲对弹道影响
Table 4. Effect of the engine total impulse on trajectory
总冲倍数 射程
/m高度
/m末速/(m/s) 落角
/(°)飞行时间/s 0.9 2 796 964 159.1 −52.0 30.9 1.0 3 416 1 155 172.2 −51.5 34.0 1.1 4 100 1 371 184.9 −51.1 37.3 1.2 4 847 1 616 197.3 −50.9 40.8 表 5 深弹炮口初速对弹道影响
Table 5. Effect of the muzzle initial velocity on trajectory
初速/(m/s) 射程/m 高度/m 末速/(m/s) 落角
/(°)飞行时间/s 20 3 196 1 065 166.7 −51.3 32.8 30 3 416 1 155 172.2 −51.5 34.0 40 3 635 1 245 177.3 −51.6 35.2 50 3 860 1 335 182.2 −51.6 36.3 表 6 深弹转弯高度对弹道影响
Table 6. Effect of the turning height on trajectory
转弯高度/m 射程/m 高度/m 末速/(m/s) 落角/(°) 飞行时间/s 20 3 416 1 155 172.2 −51.5 34.0 30 3 424 1 165 172.6 −51.6 34.1 40 3 431 1 175 172.1 −51.6 34.1 50 3 440 1 185 172.5 −51.7 34.2 表 7 深弹末端攻角对弹道影响
Table 7. Effect of the terminal angle of attack on trajectory
攻角/(°) 射程/m 高度/m 末速/(m/s) 落角/(°) 飞行时间/s 2 3 416 1 155 172.2 −51.5 34.0 4 3 508 1 156 169.4 −47.6 34.6 6 3 607 1 158 165.3 −42.8 35.4 8 3 707 1 160 160.0 −40.4 36.2 表 8 深弹转弯结束时俯仰角对弹道影响
Table 8. Effect of the pitch angle on trajectory at the end of turning
转弯结束
俯仰角/(°)射程/m 高度
/m末速/(m/s) 落角/(°) 飞行时间/s 42 3 436 991 169.1 −47.3 31.8 47 3 416 1 155 172.2 −51.5 34.0 52 3 297 1 317 175.2 −55.5 36.0 57 3 082 1 474 178.2 −59.6 37.8 表 9 深弹升力系数对弹道影响
Table 9. Effect of the lift coefficient on trajectory
升力系数倍数 射程/m 高度
/m末速/(m/s) 落角
/(°)飞行时间/s 0.9 3 367 1 152 171.9 −52.1 32.8 1.0 3 416 1 155 172.2 −51.5 34.0 1.1 3 462 1 259 172.4 −50.9 34.3 1.2 3 506 1 165 172.6 −50.4 34.5 表 10 深弹阻力系数对弹道影响
Table 10. Effect of the drag coefficient on trajectory
阻力系数倍数 射程/m 高度/m 末速/(m/s) 落角
/(°)飞行时间/s 0.9 3 487 1 170 174.6 −51.1 34.3 1.0 3 416 1 155 172.2 −51.5 34.0 1.1 3 348 1 140 168.8 −51.9 32.7 1.2 3 284 1 127 167.6 −52.3 32.5 -
[1] 孙东平, 冯林平, 范作娥. 舰艇垂直发射系统现状及发展趋势分析[J]. 飞航导弹, 2020(8): 78-81. [2] 梁良, 贾跃, 任磊. 国外舰载助飞鱼雷发展综述[J]. 鱼雷技术, 2014, 22(2): 157-160.Liang Liang, Jia Yue, Ren Lei. Review of foreign shipborne assisted torpedoes[J]. Torpedo Technology, 2014, 22(2): 157-160. [3] 刘永亮, 任克亮, 马旭轮, 等. 新形势下舰载垂直发射装置发展趋势[J]. 装备环境工程, 2019, 16(7): 60-63.Liu Yongliang, Ren Keliang, Ma Xulun, et al. Development tendency of ship vertical launcher in new situation[J]. Equipment Environmental Engineering, 2019, 16(7): 60-63. [4] 赵亚鹏, 陈延伟, 张旭耀. 深水炸弹垂直发射技术初探[J]. 数字海洋与水下攻防, 2018, 1(1): 81-84.Zhao Yapeng, Chen Yanwei, Zhang Xuyao, et al. Research on vertical launch technology of depth charge[J]. Digital Ocean & Underwater Warfare, 2018, 1(1): 81-84. [5] 洪浩, 王洋洋. 垂发自导深弹发展设想[J]. 数字海洋与水下攻防, 2021, 4(2): 107-112.Hong Hao, Wang Yangyang. Development conceptions of vertical-launched homing depth charge[J]. Digital Ocean & Underwater Warfare, 2021, 4(2): 107-112. [6] 崔洪坤, 孙振新. 飞航式火箭助飞鱼雷弹道建模与仿真[J]. 指挥控制与仿真, 2012, 34(2): 75-79.Cui Hongkun, Sun Zhenxin. Ballistic modeling and simulation of cruising rocket-assisted torpedo[J]. Command Control & Simulation, 2012, 34(2): 75-79. [7] 王齐双, 刘钧圣, 谭天汉, 等. 基于四元数的垂直发射导弹数学建模及控制策略研究[J]. 弹箭与制导学报, 2021, 41(1): 40-47.Wang Qishuang, Liu Junsheng, Tan Tianhan, et al. Modeling and control strategy design of vertically launching missiles based on quaternion[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2021, 41(1): 40-47. [8] 马璐, 孙瑞胜. 垂发超近程导弹弹道优化设计[J]. 现代防御技术, 2018, 46(2): 39-44.Ma Lu, Sun Ruisheng. Trajectory optimization design of vertical ultra short range missile[J]. Modern Defence Technology, 2018, 46(2): 39-44. [9] 赵丹辉, 何心怡, 陈兆峰, 等. 火箭自导深弹齐射方法研究[J]. 鱼雷技术, 2014, 22(3): 214-220.Zhao Danhui, He Xinyi, Chen Zhaofeng, et al. Study on salvo method of rocket homing depth charges[J]. Torpedo Technology, 2014, 22(3): 214-220. [10] 戴文留, 昌铁强, 廖欢欢, 等. 电磁发射深水炸弹空中弹道性能仿真分析[J]. 数字海洋与水下攻防, 2020, 3(2): 123-128.Dai Wenliu, Chang Tieqiang, Liao Huanhuan, et al. Simulation and analysis on air ballistic performance of electromagnetic launching depth charge[J]. Digital Ocean & Underwater Warfare, 2020, 3(2): 123-128. [11] 钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京: 北京理工大学出版社, 2000. [12] 斯维特洛夫[俄]. 防空导弹设计[M]. 北京: 中国宇航出版社, 2004.