• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

跨介质航行器入水多相流场及运动特性研究现状与展望

王聪 许海雨 卢佳兴

王聪, 许海雨, 卢佳兴. 跨介质航行器入水多相流场及运动特性研究现状与展望[J]. 水下无人系统学报, 2023, 31(1): 38-49 doi: 10.11993/j.issn.2096-3920.2022-0082
引用本文: 王聪, 许海雨, 卢佳兴. 跨介质航行器入水多相流场及运动特性研究现状与展望[J]. 水下无人系统学报, 2023, 31(1): 38-49 doi: 10.11993/j.issn.2096-3920.2022-0082
WANG Cong, XU Hai-yu, LU Jia-xing. Status and Prospects of Investigation into Multiphase Flow Field and Motion Characteristics of Trans-medium Vehicles during Water Entry[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 38-49. doi: 10.11993/j.issn.2096-3920.2022-0082
Citation: WANG Cong, XU Hai-yu, LU Jia-xing. Status and Prospects of Investigation into Multiphase Flow Field and Motion Characteristics of Trans-medium Vehicles during Water Entry[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 38-49. doi: 10.11993/j.issn.2096-3920.2022-0082

跨介质航行器入水多相流场及运动特性研究现状与展望

doi: 10.11993/j.issn.2096-3920.2022-0082
详细信息
    作者简介:

    王聪:王 聪 (1966-), 男, 教授, 博士生导师, 主要研究方向为跨介质运动体多相流动力学、水下发射技术、水下高速航行器超空化流动、多相流数值计算与实验等

  • 中图分类号: TJ6; O359.1

Status and Prospects of Investigation into Multiphase Flow Field and Motion Characteristics of Trans-medium Vehicles during Water Entry

  • 摘要: 水面或空中平台发射的高速入水航行器, 借助超空泡减阻技术突破了传统水中兵器的速度极限, 凭借高速优势可有效拦截和打击水下潜在威胁, 是当今各军事强国竞相研究的热点。但跨介质航行器高速入水过程伴随多相间复杂湍流流动、非定常空泡演变和入水冲击载荷等问题, 制约着超空泡航行器的稳定航行, 影响作战效能。文章针对航行器高速入水非定常空泡流型演变特性、跨空-水介质冲击载荷、水下尾拍运动等问题, 阐述跨介质航行器入水过程及稳定航行所涉及的诸多技术难点, 梳理航行器高速入水降载方法, 并归纳总结跨介质超空泡航行器的工程应用。最后, 展望了跨介质航行器有待解决的问题及未来发展趋势。

     

  • 图  1  不同接触角及速度下球体入水空泡形态

    Figure  1.  Cavity shape of spheres entering water with different contact angles and velocities

    图  2  弹性球体入水嵌套空泡

    Figure  2.  Nested cavity during water entry of hyperelastic sphere

    图  3  空泡尾迹融合过程

    Figure  3.  Coalesce process of cavity wake

    图  4  向上喷溅射流空泡图

    Figure  4.  Diagram of cavity upward jetting

    图  5  串列射弹运动模式

    Figure  5.  Motion pattern of projects in tandem

    图  6  半球头型射弹示意图

    Figure  6.  Diagram of hemispherical nose projectile

    图  7  附加细长杆的航行器入水历程

    Figure  7.  Entry process of vehicle with a slender rod attached

    图  8  梯度密度式缓冲头帽结构示意图

    Figure  8.  Structure diagram of gradient density buffer head cap

    图  9  超空泡鱼雷

    Figure  9.  Supercavity torpedoes

    图  10  机载快速灭雷系统

    Figure  10.  Remote airborne mine clearance system

    图  11  美国水下超空泡射弹

    Figure  11.  American underwater supercavity projectiles

    图  12  DSG防务公司研制的超空泡弹丸

    Figure  12.  Supercavity projectiles developed by DSG

  • [1] Wang H, Huang Z, Huang D, et al. Influences of Floating Ice on the Vertical Water Entry Process of a Trans-Media Projectile at High Speeds[J]. Ocean Engineering, 2022, 265: 112548. doi: 10.1016/j.oceaneng.2022.112548
    [2] Nguyen V T, Phan T H, Duy T N, et al. 3D Simulation of Water Entry of an Oblique Cylinder with Six-degree-of-freedom Motions Using an Efficient Free Surface Flow Model[J]. Ocean Engineering, 2021, 220: 108409. doi: 10.1016/j.oceaneng.2020.108409
    [3] Chen C, Yuan X, Liu X, et al. Experimental and Numerical Study on the Oblique Water-Entry Impact of a Cavitating Vehicle with a Disk Cavitator[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 482-494. doi: 10.1016/j.ijnaoe.2018.09.002
    [4] Liu H, Pi J, Zou B, et al. Experimental Investigation on the Multiphase Flow Characteristics of Oblique Water Entry of Semi-Closed Cylinder[J]. Ocean Engineering, 2021, 239: 109819. doi: 10.1016/j.oceaneng.2021.109819
    [5] Miloh T. On the Oblique Water-entry Problem of a Rigid Sphere[J]. Journal of Engineering Mathematics, 1991, 25: 77-92. doi: 10.1007/BF00036603
    [6] Song Z J, Duan W Y, Xu G D, et al. Experimental and Numerical Study of the Water Entry of Projectiles at High Oblique Entry Speed[J]. Ocean Engineering, 2020, 211: 107574. doi: 10.1016/j.oceaneng.2020.107574
    [7] Sun T, Shi C, Zhang G, et al. Cavity Dynamics of Vertical Water Entry of a Truncated Cone-Cylinder Body with Different Angles of Attack[J]. Physics of Fluids, 2021, 33(5): 055129. doi: 10.1063/5.0051703
    [8] Gilbarg D, Anderson R A. Influence of Atmospheric Pressure on the Phenomena Accompanying the Entry of Spheres into Water[J]. Journal of Applied Physics, 1948, 19(2): 127-139. doi: 10.1063/1.1698377
    [9] May A. Vertical Entry of Missiles into Water[J]. Journal of Applied Physics, 1952, 23(12): 1362-1372. doi: 10.1063/1.1702076
    [10] Duez C, Ybert C, Clanet C, et al. Making a Splash with Water Repellency[J]. Nature Physics, 2007, 3(3): 180-183. doi: 10.1038/nphys545
    [11] Aristoff J M, Truscott T T, Techet A H, et al. The Water Entry Cavity Formed by Low Bond Number Impacts[J]. Physics of Fluids, 2008, 20(9): 091111. doi: 10.1063/1.2973662
    [12] Aristoff J M, Truscott T T, Techet A H, et al. The Water Entry of Decelerating Spheres[J]. Meeting of the Aps Division of Fluid Dynamics, 2009, 22(3): 417-422.
    [13] Aristoff J M, Truscott T T. Water Entry of Small Hydrophobic Spheres[J]. Journal of Fluid Mechanics, 2009, 619: 45-78. doi: 10.1017/S0022112008004382
    [14] Aristoff J M, Truscott T T, Techet A H, et al. The Water Entry of Decelerating Spheres[J]. Physics of Fluids, 2010, 22(3): 032102. doi: 10.1063/1.3309454
    [15] Speirs N B, Mansoor M M, Belden J, et al. Water Entry of Spheres with Various Contact Angles[J]. Journal of Fluid Mechanics, 2019, 862(R3): jfm.2018.985.
    [16] Truscott T T, Epps B P, Belden J. Water Entry of Projectiles[J]. Annual Review of Fluid Mechanics, 2014, 46(1): 355-378. doi: 10.1146/annurev-fluid-011212-140753
    [17] Truscott T T, Epps B P, Techet A H. Unsteady Forces on Spheres During Free-Surface Water Entry[J]. Journal of Fluid Mechanics, 2012, 704: 173-210. doi: 10.1017/jfm.2012.232
    [18] Truscott T T, Techet A H. A Spin on Cavity Formation During Water Entry of Hydrophobic and Hydrophilic Spheres[J]. Physics of Fluids, 2009, 21(12): 121703.1-121703.4.
    [19] Truscott T T, Techet A H. Water Entry of Spinning Sph- eres[J]. Journal of Fluid Mechanics, 2009, 625: 135-165. doi: 10.1017/S0022112008005533
    [20] Zhou B, Liu H, Zhang G, et al. Numerical Simulation of Cavity Dynamics and Motion Characteristics for Water Entry of a Hydrophobic Sphere at Various Speeds and Angles[J]. Journal of Engineering Mechanics, 2020, 146(9): 4020091.1-4020091.17.
    [21] Marston J O, Vakarelski I U, Thoroddsen S T. Cavity Formation by the Impact of Leidenfrost Spheres[J]. Journal of Fluid Mechanics, 2012, 699: 465-488. doi: 10.1017/jfm.2012.124
    [22] Johnson W. The Ricochet of Spinning and Non-Spinning Projectiles, Mainly from Water. Part Ⅱ: An Outline of Theory and Warlike Applications[J]. International Journal of Impact Engineering, 1998, 21(1-2): 25-34. doi: 10.1016/S0734-743X(97)00033-X
    [23] Johnson W, Reid S R. Ricochet of Spheres of Water[J]. Journal of Mechanical Engineering Science, 1975, 17: 71-81. doi: 10.1243/JMES_JOUR_1975_017_013_02
    [24] Moxnes J F, Froland O, Skriudalen S, et al. On the Study of Ricochet and Penetration in Sand, Water and Gelatin by Spheres, 7.62 mm APM2, and 25 mm Projectiles[J]. Define Technology, 2016, 12(2): 159-170. doi: 10.1016/j.dt.2015.12.004
    [25] Belden J, Hurd R C, Jandron M A, et al. Elastic Spheres Can Walk on Water[J]. Nature Communications, 2016, 7: 10551. doi: 10.1038/ncomms10551
    [26] Hurd R, Fanning T, Pan Z, et al. Matryoshka Cavity[J]. Physics of Fluids, 2015, 27: 091104. doi: 10.1063/1.4930902
    [27] Hurd R, Belden J, Jandron M, et al. Water Entry of Deformable Spheres[J]. Journal of Fluid Mechanics, 2017, 824: 912-930. doi: 10.1017/jfm.2017.365
    [28] 魏英杰, 杨柳, 王聪, 等. 超弹性球体垂直入水空泡流动研究[J]. 空气动力学学报, 2020, 38(4): 780-787. doi: 10.7638/kqdlxxb-2019.0132

    Wei Ying-jie, Yang Liu, Wang Cong, et al. Vertical Water Entry of Hyperelastic Sphere[J]. Acta Aerodynamica Sinica, 2020, 38(4): 780-787. doi: 10.7638/kqdlxxb-2019.0132
    [29] 杨柳, 孙铁志, 魏英杰, 等. 超弹性球体入水过程空泡演化及球体变形实验[J]. 物理学报, 2021, 70(8): 289-297.

    Yang Liu, Sun Tie-zhi, Wei Ying-jie, et al. Experimental Study of Cavity Evolution and Deformation during Water Entering into Hyperelastic Sphere[J]. Acta Phys. Sin., 2021, 70(8): 289-297.
    [30] 鹿麟, 闫雪璞, 胡彦晓, 等. 弹丸倾斜入水尾拍运动特性实验研究[J/OL]. 爆炸与冲击, [2022-10-27]. https://kns.cnki.net/kcms/detail/51.1148.O3.20221026.1728.032.html.

    Lu Lin, Yan Xue-pu, Hu Yan-xiao, et al. Experimental Investigation on Tail-Slapping Motion Characteristics for Oblique Water-Entry of a Projectile[J/OL]. Explosion and Shock Waves, [2022-10-27]. https://kns.cnki.net/kcms/detail/51.1148.O3.20221026.1728.032.html.
    [31] Truscott T T. Cavity Dynamics of Water Entry for Spheres and Ballistic Projectiles[D]. USA: Massachusetts Institute of Technology, 2009.
    [32] Kirschner I N. Results of Selected Experiments Involving Supercavitating Flows[C]//RTO-AVT Lecture Series on “Supercavitating Flows”. Brussels, Belgium: RTO EN-010-15, 2001.
    [33] Hrubes J D. High-speed imaging of Supercavitating Underwater Projectiles[J]. Experiments in Fluids, 2001, 30: 57-64. doi: 10.1007/s003480000135
    [34] Schaffar M J, Rey C J, Boeglen G S. Experiments on Supercavitating Projectiles Fired Horizontally into Water[C]//Proceedings of ASME 2002 Joint U. S. -European Fluids Engineering Division Conference. Montreal, QC, Canada: ASME, 2002.
    [35] Schaffar M J, Rey C J, Boeglen G S. Behavior of Supercavitating Projectiles Fired Horizontally in a Water Tank: Theory and Experiments. CFD Computations with the OTI-HULL Hydrocode[C]//Proceedings of 35th AIAA Fluid Dynamics Conference and Exhibit. Toronto, ON, Canada: AIAA, 2005.
    [36] 郭子涛. 弹体入水特性及不同介质中金属靶的抗侵彻性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
    [37] 王晓辉, 孙士明, 季锦梁, 等. 基于耦合欧拉-拉格朗日方法的射弹高速入水尾拍数值分析[J]. 兵工学报, 2020, 41(1): 110-115.

    Wang Xiao-hui, Sun Shi-ming, Ji Jin-liang, et al. Numerical Analysis of Tail-Slapping of Projectile in Process of High-Speed Water-Entry Based on Coupled Eulerian-Lagrangian Method[J]. Acta Armamentarii, 2020, 41(1): 110-115.
    [38] 刘如石, 郭则庆, 张辉. 尾部形状对超空泡射弹尾拍运动影响的数值研究[J/OL]. 兵工学报, [2022-10-27]. http:// www.co-journal.com/CN/10.12382/bgxb.2022.0689.

    Liu Ru-shi, Guo Ze-qing, Zhang Hui. Numerical Simulation on the Influence of Tail Shapes on the Tail-Slap of Supercavitating Projectiles[J/OL]. Acta Armamentarii, [2022-10-27]. http://www.co-journal.com/CN/10.12382/bgxb.2022.0689.
    [39] 古鉴霄, 党建军, 黄闯, 等. 衡重参数对超空泡射弹有效射程的影响[J]. 兵工学报, 2022, 43(6): 1376-1386.

    Guo Jian-xiao, Dang Jian-jun, Huang Chuang, et al. Influence of Weight Parameters on the Effective Range of Supercavitation Projectile[J]. Acta Armamentarii, 2022, 43(6): 1376-1386.
    [40] 赵成功, 王聪, 孙铁志, 等. 初始扰动对射弹尾拍运动及弹道特性影响分析[J]. 哈尔滨工业大学学报, 2016, 48(10): 71-76. doi: 10.11918/j.issn.0367-6234.2016.10.010

    Zhao Cheng-gong, Wang Cong, Sun Tie-zhi, et al. Analysis of Tail-Slapping and Ballistic Characteristics of Supercavitating Projectiles Under Different Initial Disturbances[J]. Journal of Harbin Institute of Technology, 2016, 48(10): 71-76. doi: 10.11918/j.issn.0367-6234.2016.10.010
    [41] 姚忠, 王瑞, 祁晓斌, 等. 初始扰动对高速射弹尾拍过程流体动力特性与弹道特性的影响[J]. 兵工学报, 2020, 41(1): 46-53.

    Yao Zhong, Wang Rui, Qi Xiao-bin, et al. The Influence of Initial Disturbance on the Hydrodynamic and Ballistic Characteristics of High-Speed Projectile during Tail Slapping[J]. Acta Armamentarii, 2020, 41(1): 46-53.
    [42] 李佳川, 魏英杰, 王聪, 等. 不同扰动角速度高速射弹入水弹道特性[J]. 哈尔滨工业大学学报, 2017, 49(4): 131-136. doi: 10.11918/j.issn.0367-6234.201512058

    Li Jia-chuan, Wei Ying-jie, Wang Cong, et al. Water Entry Trajectory Characteristics of High-Speed Projectiles with Various Turbulent Angular Velocity[J]. Journal of Harbin Institute of Technology, 2017, 49(4): 131-136. doi: 10.11918/j.issn.0367-6234.201512058
    [43] Wu G X. Numerical Simulation of Water Entry of Twin-Wedges[J]. Journal of Fluids and Structures, 2006, 22(1): 99-108. doi: 10.1016/j.jfluidstructs.2005.08.013
    [44] Yousefnezhad R, Zeraatgar H. A Parametric Study on Water-Entry of a Twin Wedge by Boundary Element Method[J]. Journal of Marine Science Technology, 2014, 19: 314-326. doi: 10.1007/s00773-013-0250-1
    [45] 王旭, 吕续舰. 双球并联入水空化及运动特性实验研究[J]. 振动与冲击, 2020, 39(15): 221-229. doi: 10.13465/j.cnki.jvs.2020.15.030

    Wang Xu, Lü Xu-jian. Tests for Cavitation and Motion Characteristics of Double-Ball Parallel Water Entry[J]. Journal of Vibration and Shock, 2020, 39(15): 221-229. doi: 10.13465/j.cnki.jvs.2020.15.030
    [46] 王辰, 鹿麟, 祁晓斌. 超空泡射弹并联入水多相流场与弹道特性研究[J]. 振动与冲击, 2022, 41(10): 292-300.

    Wang Chen, Lu Lin, Qi Xiao-bin. Multiphase Flow Field and Trajectory Characteristics of Two Supercavitating Projectiles in Parallel Water-entry[J]. Journal of Vibration and Shock, 2022, 41(10): 292-300.
    [47] Mnasri C, Hafsia Z, Omri M, et al. A Moving Grid Model for Simulation of Free Surface Behavior Induced by Horizontal Cylinders Exit and Entry[J]. Engineering Applications of Computational Fluid Mechanics, 2010, 4(2): 260-275. doi: 10.1080/19942060.2010.11015315
    [48] 卢佳兴, 王聪, 魏英杰, 等. 轴线间距对圆柱体低速并联入水空泡演化影响试验研究[J]. 振动与冲击, 2020, 39(12): 272-280. doi: 10.13465/j.cnki.jvs.2020.12.037

    Lu Jia-xing, Wang Cong, Wei Ying-jie, et al. An Experimental Study on the Effect of Axis Distances on the Cavity Evolution in the Low-Speed Water Entry Process of Two Parallel Cylinders[J]. Journal of Vibration and Shock, 2020, 39(12): 272-280. doi: 10.13465/j.cnki.jvs.2020.12.037
    [49] 宋武超, 魏英杰, 路丽睿, 等. 基于势流理论的回转体并联入水双空泡演化动力学研究[J]. 物理学报, 2018, 67(22): 224702. doi: 10.7498/aps.67.20181375

    Song Wu-chao, Wei Ying-jie, Lu Li-rui, et al. Dynamic Characteristics of Parallel Water-Entry Cavity Based on Potential Flow Theory[J]. Acta Physica Sinica, 2018, 67(22): 224702. doi: 10.7498/aps.67.20181375
    [50] 路丽睿, 魏英杰, 王聪, 等. 双圆柱体低速并联入水过程空泡及运动特性试验研究[J]. 振动与冲击, 2019, 38(7): 42-49.

    Lu Li-rui, Wei Ying-jie, Wang Cong, et al. Tests for Cavities and Motion Characteristics in Process of Two-Cylinder in Parallel Water Entry at Low Speed[J]. Journal of Vibration and Shock, 2019, 38(7): 42-49.
    [51] 张鹤, 魏英杰, 王聪, 等. 并联射弹水下运动实验研究[J]. 舰船科学技术, 2021, 43(2): 71-75. doi: 10.3404/j.issn.1672-7649.2021.02.015

    Zhang He, Wei Ying-jie, Wang Cong, et al. Experimental Study on Underwater Motion of Parallel Projectiles[J]. Ship Science and Technology, 2021, 43(2): 71-75. doi: 10.3404/j.issn.1672-7649.2021.02.015
    [52] 张鹤, 魏英杰, 王聪, 等. 侧方扰动下圆柱体异步并列入水试验[J]. 船舶工程, 2020, 42(9): 142-148. doi: 10.13788/j.cnki.cbgc.2020.09.25

    Zhang He, Wei Ying-jie, Wang Cong, et al. Experiment of Asynchronous Parallel Water-entry Process of Cylinders under Side Disturbance[J]. Ship Engineering, 2020, 42(9): 142-148. doi: 10.13788/j.cnki.cbgc.2020.09.25
    [53] 闫雪璞, 鹿麟, 王辰超, 等. 超空泡射弹异步并联入水流场与运动特性研究[J]. 振动与冲击, 2022, 41(16): 167-176.

    Yan Xue-pu, Lu Lin, Wang Chen-chao, et al. A Study on Flow Field Characteristics and Motion Characteristics of Two Supercavitating Projectiles in Asynchronous Parallel Water-Entry[J]. Journal of Vibration and Shock, 2022, 41(16): 167-176.
    [54] 黄海龙, 王聪, 余德磊. 高速射弹并联入水过程空泡演化特性试验[J]. 哈尔滨工业大学学报, 2020, 52(12): 15-20. doi: 10.11918/201903028

    Huang Hai-long, Wang Cong, Yu De-lei, et al. Experimental Study on Cavitation Evolution of High-Speed Projectile Water Entry in Parallel[J]. Journal of Harbin Institute of Technology, 2020, 52(12): 15-20. doi: 10.11918/201903028
    [55] Yun H, Lyu X, Wei Z. Experimental Study on Vertical Water Entry of Two Tandem Spheres[J]. Ocean Engineering, 2020, 201: 107143. doi: 10.1016/j.oceaneng.2020.107143
    [56] Yun H, Lyu X, Wei Z. Experimental Study on Oblique Water Entry of Two Tandem Spheres with Collision Effect[J]. Journal of Visualization, 2020, 23(1): 49-59.
    [57] 周东辉. 水中多连发射弹的超空泡流动特性研究[D]. 杭州: 浙江理工大学, 2021.
    [58] 余德磊, 曹伟, 魏英杰. 回转体低速串联入水空泡及运动特性试验研究[J]. 兵工学报, 2020, 41(7): 1375-1383. doi: 10.3969/j.issn.1000-1093.2020.07.015

    Yu De-lei, Cao Wei, Wei Ying-jie. Experimental Reaserch on Cavitation and Motion Characteristics of Low-Speed Water Entry of Rotary Bodies in Tandem[J]. Acta Armamentarii, 2020, 41(7): 1375-1383. doi: 10.3969/j.issn.1000-1093.2020.07.015
    [59] 何春涛, 王聪, 何乾坤, 等. 圆柱体低速入水空泡试验研究[J]. 物理学报, 2012, 61(13): 134701. doi: 10.7498/aps.61.134701

    He Chun-tao, Wang Cong, He Qian-kun, et al. Low Speed Water-Entry of Cylindrical Projectile[J]. Acta Physica Sinica, 2012, 61(13): 134701. doi: 10.7498/aps.61.134701
    [60] Wanger H. Uber Stoss-und Gleitvorgange an der Oberflache von Flussigkeiten[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4): 193-215.
    [61] Mayo W L. Hydrodynamic Impact of a System with a Single Elastic Mode[R]. USA: NACA, 1947.
    [62] Shi Y, Gao X F, Pan G. Experimental and Numerical Investigation of the Frequency-Domain Characteristics of Impact Load for AUV during Water Entry[J]. Ocean Engineering, 2020, 202: 107203. doi: 10.1016/j.oceaneng.2020.107203
    [63] 郑强, 杨日杰, 陈佳琪, 等. 直升机空投鱼雷的散布误差研究[J]. 科学技术与工程, 2017, 17(15): 65-70. doi: 10.3969/j.issn.1671-1815.2017.15.009

    Zheng Qiang, Yang Ri-jie, Chen Jia-qi, et al. Research on Dispersion Errors of Helicopter’s Airdrop Torpedo[J]. Science Technology and Engineering, 2017, 17(15): 65-70. doi: 10.3969/j.issn.1671-1815.2017.15.009
    [64] 温志文, 杨智栋, 王力竟. 空投鱼雷系统建模与空中弹道仿真研究[J]. 弹箭与制导学报, 2019, 39(5): 63-66,72. doi: 10.15892/j.cnki.djzdxb.2019.05.015

    Wen Zhi-wen, Yang Zhi-dong, Wang Li-jing. Modeling of the Air-Dropped Torpedo System and the Simulation Research of the Air Trajectory[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(5): 63-66,72. doi: 10.15892/j.cnki.djzdxb.2019.05.015
    [65] 陈洋, 吴亮, 曾国伟, 等. 带环形密闭气囊弹体入水冲击过程的数值分析[J]. 爆炸与冲击, 2018, 38(5): 1155-1164. doi: 10.11883/bzycj-2017-0387

    Chen Yang, Wu Liang, Zeng Guo-wei, et al. Numerical Analysis of the Water Entry Process of a Projectile with a Circular Airbag[J]. Explosion and Shock Waves, 2018, 38(5): 1155-1164. doi: 10.11883/bzycj-2017-0387
    [66] 石汉成, 蒋培, 程锦房. 头部形状对水雷入水载荷及水下弹道影响的数值仿真分析[J]. 舰船科学技术, 2010, 31(10): 104-107. doi: 10.3404/j.issn.1672-7649.2010.10.027

    Shi Han-cheng, Jiang Pei, Cheng Jin-fang. Research on Numerical Simulation of Mine Water-Entry Impact Acceleration and Underwater Ballistic Trajectory under the Different Mine’s Head Shape[J]. Ship Science and Technology, 2010, 31(10): 104-107. doi: 10.3404/j.issn.1672-7649.2010.10.027
    [67] 卢丙举, 朱珠. 细长前锥段超空泡航行器高速入水的载荷数值模拟[J]. 舰船科学技术, 2017, 39(8): 119-123. doi: 10.3404/j.issn.1672-7649.2017.08.025

    Lu Bing-ju, Zhu Zhu. Numerical Research on Load of a Super-Cavity Vehicle with Cone-Shaped Segment at High-Speed Water-Entry[J]. Ship Science and Technology, 2017, 39(8): 119-123. doi: 10.3404/j.issn.1672-7649.2017.08.025
    [68] Guo Z, Zhang W, Wang C. Experimental and Theoretical Study on the High-Speed Horizontal Water Entry Behaviors of Cylindrical Projectiles[J]. Journal of Hydrodynamics, Ser. B, 2012, 24(2): 217-225. doi: 10.1016/S1001-6058(11)60237-0
    [69] Guo Z, Zhang W, Xiao X, et al. An Investigation into Horizontal Water Entry Behaviors of Projectiles with Different Nose Shapes[J]. International Journal of Impact Engineering, 2012, 49(2): 43-60.
    [70] 杨宇. 细长杆头型航行体高速入水载荷特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
    [71] Hincley W M, Yang J C S. Analysis of Rigid Polyurethane Foam as a Shock Mitigator[J]. Experimental Mechanics, 1975, 15: 177-183. doi: 10.1007/BF02319143
    [72] 宣建明, 宋志平, 严忠汉. 鱼雷入水缓冲保护头帽解体试验研究[J]. 鱼雷技术, 1999, 7(2): 45-50.
    [73] 徐新栋, 李建辰, 曹小娟. 鱼雷缓冲头帽入水冲击性能研究[J]. 鱼雷技术, 2012, 20(3): 161-165.

    Xu Xin-dong, Li Jian-chen, Cao Xiao-juan. Water-entry Impact Performance of Torpedo’s Cushion Nose Cap[J]. Torpedo Technology, 2012, 20(3): 161-165.
    [74] 王永虎, 石秀华, 王鹏. 雷弹入水冲击动态缓冲性能分析[J]. 西北工业大学学报, 2009, 27(5): 707-712. doi: 10.3969/j.issn.1000-2758.2009.05.023

    Wang Yong-hu, Shi Xiu-hua, Wang Peng. Exploring Analysis of Dynamic Cushioning Properties of Water-entry Missile’s Shock Mitigator[J]. Journal of Northwestern Polytechnical University, 2009, 27(5): 707-712. doi: 10.3969/j.issn.1000-2758.2009.05.023
    [75] Robert A S, Margaret R M, Paul A L. Method of Producing Missile Nose Cones: 20100326182A1[P]. 2009-06-25.
    [76] Wu S Y, Shao Z Y, Feng S S, et al. Water-entry Behavior of Projectiles under the Protection of Polyurethane Buffer Head[J]. Ocean Engineering, 2020, 197: 106890. doi: 10.1016/j.oceaneng.2019.106890
    [77] Shi Y, Gao X F, Pan G. Design and Load Reduction Performance Analysis of Mitigator of AUV during High-speed Water Entry[J]. Ocean Engineering, 2019, 181: 314-329. doi: 10.1016/j.oceaneng.2019.03.062
    [78] 施瑶, 刘振鹏, 潘光, 等. 航行体梯度密度式头帽结构设计及降载性能分析[J]. 力学学报, 2022, 54(4): 939-953. doi: 10.6052/0459-1879-21-620

    Shi Yao, Liu zhen-peng, Pan Guang, et al. Structural Design and Load Reduction Performance Analysis of Gradient Density Head Cap of Vehicle[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 939-953. doi: 10.6052/0459-1879-21-620
    [79] 张学广, 边金尧, 方世武. Д形圆柱体大角度撞水载荷计算及缓冲问题的研究[J]. 中国舰船研究, 2007, 2(5): 30-32, 41. doi: 10.3969/j.issn.1673-3185.2007.05.007

    Zhang Xue-guang, Bian Jin-rao, Sun Shi-wu. Water Impact Load Calculation and Buffering Design of Д Type Cylinder Structure at Large Angle[J]. Chinese Journal of Ship Research, 2007, 2(5): 30-32, 41. doi: 10.3969/j.issn.1673-3185.2007.05.007
    [80] 潘龙, 王焕然, 姚尔人, 等. 头部喷气平头圆柱体入水缓冲机制研究[J]. 工程热物理学报, 2015, 36(8): 1691-1695.

    Pan Long, Wang Huan-ran, Yao Er-ren, et al. Mechanism Research on the Water-Entry Impact of the Head-Jetting Flat Cylinder[J]. Journal of Engineering Thermophysics, 2015, 36(8): 1691-1695.
    [81] 刘华坪, 余飞鹏, 韩冰, 等. 头部喷气影响航行体入水载荷的数值模拟[J]. 工程热物理学报, 2019, 40(2): 300-305.

    Liu Hua-ping, Yu Fei-peng, Han Bing, et al. Numerical Simulation Study on Influence of Top Jet in Object Water Entering Impact[J]. Journal of Engineering Thermophysics, 2019, 40(2): 300-305.
    [82] 赵海瑞, 施瑶, 潘光. 头部喷气航行器高速入水空泡特性数值分析[J]. 西北工业大学学报, 2021, 39(4): 810-817. doi: 10.1051/jnwpu/20213940810

    Zhao Hai-rui, Shi Yao, Pan Guang. Numerical Simulation of Cavitation Characteristics in High-Speed Water Entry of Head-Jetting Underwater Vehicle[J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 810-817. doi: 10.1051/jnwpu/20213940810
    [83] Ruggaber W. BARRACUDA—Guidance and Control of a Supercavitating High Speed UW(Underwater) Missile[J]. Naval Forces, 2006, 27(5): 44-49.
    [84] 庄芷渔. 挪威Cav-X超空泡水下枪弹[J]. 兵器知识, 2019, 8: 35-37.
  • 加载中
图(12)
计量
  • 文章访问数:  805
  • HTML全文浏览量:  200
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-30
  • 修回日期:  2022-12-26
  • 录用日期:  2023-01-12
  • 网络出版日期:  2023-02-20

目录

    /

    返回文章
    返回
    服务号
    订阅号