[1] |
Wang H, Huang Z, Huang D, et al. Influences of Floating Ice on the Vertical Water Entry Process of a Trans-Media Projectile at High Speeds[J]. Ocean Engineering, 2022, 265: 112548. doi: 10.1016/j.oceaneng.2022.112548
|
[2] |
Nguyen V T, Phan T H, Duy T N, et al. 3D Simulation of Water Entry of an Oblique Cylinder with Six-degree-of-freedom Motions Using an Efficient Free Surface Flow Model[J]. Ocean Engineering, 2021, 220: 108409. doi: 10.1016/j.oceaneng.2020.108409
|
[3] |
Chen C, Yuan X, Liu X, et al. Experimental and Numerical Study on the Oblique Water-Entry Impact of a Cavitating Vehicle with a Disk Cavitator[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 482-494. doi: 10.1016/j.ijnaoe.2018.09.002
|
[4] |
Liu H, Pi J, Zou B, et al. Experimental Investigation on the Multiphase Flow Characteristics of Oblique Water Entry of Semi-Closed Cylinder[J]. Ocean Engineering, 2021, 239: 109819. doi: 10.1016/j.oceaneng.2021.109819
|
[5] |
Miloh T. On the Oblique Water-entry Problem of a Rigid Sphere[J]. Journal of Engineering Mathematics, 1991, 25: 77-92. doi: 10.1007/BF00036603
|
[6] |
Song Z J, Duan W Y, Xu G D, et al. Experimental and Numerical Study of the Water Entry of Projectiles at High Oblique Entry Speed[J]. Ocean Engineering, 2020, 211: 107574. doi: 10.1016/j.oceaneng.2020.107574
|
[7] |
Sun T, Shi C, Zhang G, et al. Cavity Dynamics of Vertical Water Entry of a Truncated Cone-Cylinder Body with Different Angles of Attack[J]. Physics of Fluids, 2021, 33(5): 055129. doi: 10.1063/5.0051703
|
[8] |
Gilbarg D, Anderson R A. Influence of Atmospheric Pressure on the Phenomena Accompanying the Entry of Spheres into Water[J]. Journal of Applied Physics, 1948, 19(2): 127-139. doi: 10.1063/1.1698377
|
[9] |
May A. Vertical Entry of Missiles into Water[J]. Journal of Applied Physics, 1952, 23(12): 1362-1372. doi: 10.1063/1.1702076
|
[10] |
Duez C, Ybert C, Clanet C, et al. Making a Splash with Water Repellency[J]. Nature Physics, 2007, 3(3): 180-183. doi: 10.1038/nphys545
|
[11] |
Aristoff J M, Truscott T T, Techet A H, et al. The Water Entry Cavity Formed by Low Bond Number Impacts[J]. Physics of Fluids, 2008, 20(9): 091111. doi: 10.1063/1.2973662
|
[12] |
Aristoff J M, Truscott T T, Techet A H, et al. The Water Entry of Decelerating Spheres[J]. Meeting of the Aps Division of Fluid Dynamics, 2009, 22(3): 417-422.
|
[13] |
Aristoff J M, Truscott T T. Water Entry of Small Hydrophobic Spheres[J]. Journal of Fluid Mechanics, 2009, 619: 45-78. doi: 10.1017/S0022112008004382
|
[14] |
Aristoff J M, Truscott T T, Techet A H, et al. The Water Entry of Decelerating Spheres[J]. Physics of Fluids, 2010, 22(3): 032102. doi: 10.1063/1.3309454
|
[15] |
Speirs N B, Mansoor M M, Belden J, et al. Water Entry of Spheres with Various Contact Angles[J]. Journal of Fluid Mechanics, 2019, 862(R3): jfm.2018.985.
|
[16] |
Truscott T T, Epps B P, Belden J. Water Entry of Projectiles[J]. Annual Review of Fluid Mechanics, 2014, 46(1): 355-378. doi: 10.1146/annurev-fluid-011212-140753
|
[17] |
Truscott T T, Epps B P, Techet A H. Unsteady Forces on Spheres During Free-Surface Water Entry[J]. Journal of Fluid Mechanics, 2012, 704: 173-210. doi: 10.1017/jfm.2012.232
|
[18] |
Truscott T T, Techet A H. A Spin on Cavity Formation During Water Entry of Hydrophobic and Hydrophilic Spheres[J]. Physics of Fluids, 2009, 21(12): 121703.1-121703.4.
|
[19] |
Truscott T T, Techet A H. Water Entry of Spinning Sph- eres[J]. Journal of Fluid Mechanics, 2009, 625: 135-165. doi: 10.1017/S0022112008005533
|
[20] |
Zhou B, Liu H, Zhang G, et al. Numerical Simulation of Cavity Dynamics and Motion Characteristics for Water Entry of a Hydrophobic Sphere at Various Speeds and Angles[J]. Journal of Engineering Mechanics, 2020, 146(9): 4020091.1-4020091.17.
|
[21] |
Marston J O, Vakarelski I U, Thoroddsen S T. Cavity Formation by the Impact of Leidenfrost Spheres[J]. Journal of Fluid Mechanics, 2012, 699: 465-488. doi: 10.1017/jfm.2012.124
|
[22] |
Johnson W. The Ricochet of Spinning and Non-Spinning Projectiles, Mainly from Water. Part Ⅱ: An Outline of Theory and Warlike Applications[J]. International Journal of Impact Engineering, 1998, 21(1-2): 25-34. doi: 10.1016/S0734-743X(97)00033-X
|
[23] |
Johnson W, Reid S R. Ricochet of Spheres of Water[J]. Journal of Mechanical Engineering Science, 1975, 17: 71-81. doi: 10.1243/JMES_JOUR_1975_017_013_02
|
[24] |
Moxnes J F, Froland O, Skriudalen S, et al. On the Study of Ricochet and Penetration in Sand, Water and Gelatin by Spheres, 7.62 mm APM2, and 25 mm Projectiles[J]. Define Technology, 2016, 12(2): 159-170. doi: 10.1016/j.dt.2015.12.004
|
[25] |
Belden J, Hurd R C, Jandron M A, et al. Elastic Spheres Can Walk on Water[J]. Nature Communications, 2016, 7: 10551. doi: 10.1038/ncomms10551
|
[26] |
Hurd R, Fanning T, Pan Z, et al. Matryoshka Cavity[J]. Physics of Fluids, 2015, 27: 091104. doi: 10.1063/1.4930902
|
[27] |
Hurd R, Belden J, Jandron M, et al. Water Entry of Deformable Spheres[J]. Journal of Fluid Mechanics, 2017, 824: 912-930. doi: 10.1017/jfm.2017.365
|
[28] |
魏英杰, 杨柳, 王聪, 等. 超弹性球体垂直入水空泡流动研究[J]. 空气动力学学报, 2020, 38(4): 780-787. doi: 10.7638/kqdlxxb-2019.0132Wei Ying-jie, Yang Liu, Wang Cong, et al. Vertical Water Entry of Hyperelastic Sphere[J]. Acta Aerodynamica Sinica, 2020, 38(4): 780-787. doi: 10.7638/kqdlxxb-2019.0132
|
[29] |
杨柳, 孙铁志, 魏英杰, 等. 超弹性球体入水过程空泡演化及球体变形实验[J]. 物理学报, 2021, 70(8): 289-297.Yang Liu, Sun Tie-zhi, Wei Ying-jie, et al. Experimental Study of Cavity Evolution and Deformation during Water Entering into Hyperelastic Sphere[J]. Acta Phys. Sin., 2021, 70(8): 289-297.
|
[30] |
鹿麟, 闫雪璞, 胡彦晓, 等. 弹丸倾斜入水尾拍运动特性实验研究[J/OL]. 爆炸与冲击, [2022-10-27]. https://kns.cnki.net/kcms/detail/51.1148.O3.20221026.1728.032.html.Lu Lin, Yan Xue-pu, Hu Yan-xiao, et al. Experimental Investigation on Tail-Slapping Motion Characteristics for Oblique Water-Entry of a Projectile[J/OL]. Explosion and Shock Waves, [2022-10-27]. https://kns.cnki.net/kcms/detail/51.1148.O3.20221026.1728.032.html.
|
[31] |
Truscott T T. Cavity Dynamics of Water Entry for Spheres and Ballistic Projectiles[D]. USA: Massachusetts Institute of Technology, 2009.
|
[32] |
Kirschner I N. Results of Selected Experiments Involving Supercavitating Flows[C]//RTO-AVT Lecture Series on “Supercavitating Flows”. Brussels, Belgium: RTO EN-010-15, 2001.
|
[33] |
Hrubes J D. High-speed imaging of Supercavitating Underwater Projectiles[J]. Experiments in Fluids, 2001, 30: 57-64. doi: 10.1007/s003480000135
|
[34] |
Schaffar M J, Rey C J, Boeglen G S. Experiments on Supercavitating Projectiles Fired Horizontally into Water[C]//Proceedings of ASME 2002 Joint U. S. -European Fluids Engineering Division Conference. Montreal, QC, Canada: ASME, 2002.
|
[35] |
Schaffar M J, Rey C J, Boeglen G S. Behavior of Supercavitating Projectiles Fired Horizontally in a Water Tank: Theory and Experiments. CFD Computations with the OTI-HULL Hydrocode[C]//Proceedings of 35th AIAA Fluid Dynamics Conference and Exhibit. Toronto, ON, Canada: AIAA, 2005.
|
[36] |
郭子涛. 弹体入水特性及不同介质中金属靶的抗侵彻性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
|
[37] |
王晓辉, 孙士明, 季锦梁, 等. 基于耦合欧拉-拉格朗日方法的射弹高速入水尾拍数值分析[J]. 兵工学报, 2020, 41(1): 110-115.Wang Xiao-hui, Sun Shi-ming, Ji Jin-liang, et al. Numerical Analysis of Tail-Slapping of Projectile in Process of High-Speed Water-Entry Based on Coupled Eulerian-Lagrangian Method[J]. Acta Armamentarii, 2020, 41(1): 110-115.
|
[38] |
刘如石, 郭则庆, 张辉. 尾部形状对超空泡射弹尾拍运动影响的数值研究[J/OL]. 兵工学报, [2022-10-27]. http:// www.co-journal.com/CN/10.12382/bgxb.2022.0689.Liu Ru-shi, Guo Ze-qing, Zhang Hui. Numerical Simulation on the Influence of Tail Shapes on the Tail-Slap of Supercavitating Projectiles[J/OL]. Acta Armamentarii, [2022-10-27]. http://www.co-journal.com/CN/10.12382/bgxb.2022.0689.
|
[39] |
古鉴霄, 党建军, 黄闯, 等. 衡重参数对超空泡射弹有效射程的影响[J]. 兵工学报, 2022, 43(6): 1376-1386.Guo Jian-xiao, Dang Jian-jun, Huang Chuang, et al. Influence of Weight Parameters on the Effective Range of Supercavitation Projectile[J]. Acta Armamentarii, 2022, 43(6): 1376-1386.
|
[40] |
赵成功, 王聪, 孙铁志, 等. 初始扰动对射弹尾拍运动及弹道特性影响分析[J]. 哈尔滨工业大学学报, 2016, 48(10): 71-76. doi: 10.11918/j.issn.0367-6234.2016.10.010Zhao Cheng-gong, Wang Cong, Sun Tie-zhi, et al. Analysis of Tail-Slapping and Ballistic Characteristics of Supercavitating Projectiles Under Different Initial Disturbances[J]. Journal of Harbin Institute of Technology, 2016, 48(10): 71-76. doi: 10.11918/j.issn.0367-6234.2016.10.010
|
[41] |
姚忠, 王瑞, 祁晓斌, 等. 初始扰动对高速射弹尾拍过程流体动力特性与弹道特性的影响[J]. 兵工学报, 2020, 41(1): 46-53.Yao Zhong, Wang Rui, Qi Xiao-bin, et al. The Influence of Initial Disturbance on the Hydrodynamic and Ballistic Characteristics of High-Speed Projectile during Tail Slapping[J]. Acta Armamentarii, 2020, 41(1): 46-53.
|
[42] |
李佳川, 魏英杰, 王聪, 等. 不同扰动角速度高速射弹入水弹道特性[J]. 哈尔滨工业大学学报, 2017, 49(4): 131-136. doi: 10.11918/j.issn.0367-6234.201512058Li Jia-chuan, Wei Ying-jie, Wang Cong, et al. Water Entry Trajectory Characteristics of High-Speed Projectiles with Various Turbulent Angular Velocity[J]. Journal of Harbin Institute of Technology, 2017, 49(4): 131-136. doi: 10.11918/j.issn.0367-6234.201512058
|
[43] |
Wu G X. Numerical Simulation of Water Entry of Twin-Wedges[J]. Journal of Fluids and Structures, 2006, 22(1): 99-108. doi: 10.1016/j.jfluidstructs.2005.08.013
|
[44] |
Yousefnezhad R, Zeraatgar H. A Parametric Study on Water-Entry of a Twin Wedge by Boundary Element Method[J]. Journal of Marine Science Technology, 2014, 19: 314-326. doi: 10.1007/s00773-013-0250-1
|
[45] |
王旭, 吕续舰. 双球并联入水空化及运动特性实验研究[J]. 振动与冲击, 2020, 39(15): 221-229. doi: 10.13465/j.cnki.jvs.2020.15.030Wang Xu, Lü Xu-jian. Tests for Cavitation and Motion Characteristics of Double-Ball Parallel Water Entry[J]. Journal of Vibration and Shock, 2020, 39(15): 221-229. doi: 10.13465/j.cnki.jvs.2020.15.030
|
[46] |
王辰, 鹿麟, 祁晓斌. 超空泡射弹并联入水多相流场与弹道特性研究[J]. 振动与冲击, 2022, 41(10): 292-300.Wang Chen, Lu Lin, Qi Xiao-bin. Multiphase Flow Field and Trajectory Characteristics of Two Supercavitating Projectiles in Parallel Water-entry[J]. Journal of Vibration and Shock, 2022, 41(10): 292-300.
|
[47] |
Mnasri C, Hafsia Z, Omri M, et al. A Moving Grid Model for Simulation of Free Surface Behavior Induced by Horizontal Cylinders Exit and Entry[J]. Engineering Applications of Computational Fluid Mechanics, 2010, 4(2): 260-275. doi: 10.1080/19942060.2010.11015315
|
[48] |
卢佳兴, 王聪, 魏英杰, 等. 轴线间距对圆柱体低速并联入水空泡演化影响试验研究[J]. 振动与冲击, 2020, 39(12): 272-280. doi: 10.13465/j.cnki.jvs.2020.12.037Lu Jia-xing, Wang Cong, Wei Ying-jie, et al. An Experimental Study on the Effect of Axis Distances on the Cavity Evolution in the Low-Speed Water Entry Process of Two Parallel Cylinders[J]. Journal of Vibration and Shock, 2020, 39(12): 272-280. doi: 10.13465/j.cnki.jvs.2020.12.037
|
[49] |
宋武超, 魏英杰, 路丽睿, 等. 基于势流理论的回转体并联入水双空泡演化动力学研究[J]. 物理学报, 2018, 67(22): 224702. doi: 10.7498/aps.67.20181375Song Wu-chao, Wei Ying-jie, Lu Li-rui, et al. Dynamic Characteristics of Parallel Water-Entry Cavity Based on Potential Flow Theory[J]. Acta Physica Sinica, 2018, 67(22): 224702. doi: 10.7498/aps.67.20181375
|
[50] |
路丽睿, 魏英杰, 王聪, 等. 双圆柱体低速并联入水过程空泡及运动特性试验研究[J]. 振动与冲击, 2019, 38(7): 42-49.Lu Li-rui, Wei Ying-jie, Wang Cong, et al. Tests for Cavities and Motion Characteristics in Process of Two-Cylinder in Parallel Water Entry at Low Speed[J]. Journal of Vibration and Shock, 2019, 38(7): 42-49.
|
[51] |
张鹤, 魏英杰, 王聪, 等. 并联射弹水下运动实验研究[J]. 舰船科学技术, 2021, 43(2): 71-75. doi: 10.3404/j.issn.1672-7649.2021.02.015Zhang He, Wei Ying-jie, Wang Cong, et al. Experimental Study on Underwater Motion of Parallel Projectiles[J]. Ship Science and Technology, 2021, 43(2): 71-75. doi: 10.3404/j.issn.1672-7649.2021.02.015
|
[52] |
张鹤, 魏英杰, 王聪, 等. 侧方扰动下圆柱体异步并列入水试验[J]. 船舶工程, 2020, 42(9): 142-148. doi: 10.13788/j.cnki.cbgc.2020.09.25Zhang He, Wei Ying-jie, Wang Cong, et al. Experiment of Asynchronous Parallel Water-entry Process of Cylinders under Side Disturbance[J]. Ship Engineering, 2020, 42(9): 142-148. doi: 10.13788/j.cnki.cbgc.2020.09.25
|
[53] |
闫雪璞, 鹿麟, 王辰超, 等. 超空泡射弹异步并联入水流场与运动特性研究[J]. 振动与冲击, 2022, 41(16): 167-176.Yan Xue-pu, Lu Lin, Wang Chen-chao, et al. A Study on Flow Field Characteristics and Motion Characteristics of Two Supercavitating Projectiles in Asynchronous Parallel Water-Entry[J]. Journal of Vibration and Shock, 2022, 41(16): 167-176.
|
[54] |
黄海龙, 王聪, 余德磊. 高速射弹并联入水过程空泡演化特性试验[J]. 哈尔滨工业大学学报, 2020, 52(12): 15-20. doi: 10.11918/201903028Huang Hai-long, Wang Cong, Yu De-lei, et al. Experimental Study on Cavitation Evolution of High-Speed Projectile Water Entry in Parallel[J]. Journal of Harbin Institute of Technology, 2020, 52(12): 15-20. doi: 10.11918/201903028
|
[55] |
Yun H, Lyu X, Wei Z. Experimental Study on Vertical Water Entry of Two Tandem Spheres[J]. Ocean Engineering, 2020, 201: 107143. doi: 10.1016/j.oceaneng.2020.107143
|
[56] |
Yun H, Lyu X, Wei Z. Experimental Study on Oblique Water Entry of Two Tandem Spheres with Collision Effect[J]. Journal of Visualization, 2020, 23(1): 49-59.
|
[57] |
周东辉. 水中多连发射弹的超空泡流动特性研究[D]. 杭州: 浙江理工大学, 2021.
|
[58] |
余德磊, 曹伟, 魏英杰. 回转体低速串联入水空泡及运动特性试验研究[J]. 兵工学报, 2020, 41(7): 1375-1383. doi: 10.3969/j.issn.1000-1093.2020.07.015Yu De-lei, Cao Wei, Wei Ying-jie. Experimental Reaserch on Cavitation and Motion Characteristics of Low-Speed Water Entry of Rotary Bodies in Tandem[J]. Acta Armamentarii, 2020, 41(7): 1375-1383. doi: 10.3969/j.issn.1000-1093.2020.07.015
|
[59] |
何春涛, 王聪, 何乾坤, 等. 圆柱体低速入水空泡试验研究[J]. 物理学报, 2012, 61(13): 134701. doi: 10.7498/aps.61.134701He Chun-tao, Wang Cong, He Qian-kun, et al. Low Speed Water-Entry of Cylindrical Projectile[J]. Acta Physica Sinica, 2012, 61(13): 134701. doi: 10.7498/aps.61.134701
|
[60] |
Wanger H. Uber Stoss-und Gleitvorgange an der Oberflache von Flussigkeiten[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4): 193-215.
|
[61] |
Mayo W L. Hydrodynamic Impact of a System with a Single Elastic Mode[R]. USA: NACA, 1947.
|
[62] |
Shi Y, Gao X F, Pan G. Experimental and Numerical Investigation of the Frequency-Domain Characteristics of Impact Load for AUV during Water Entry[J]. Ocean Engineering, 2020, 202: 107203. doi: 10.1016/j.oceaneng.2020.107203
|
[63] |
郑强, 杨日杰, 陈佳琪, 等. 直升机空投鱼雷的散布误差研究[J]. 科学技术与工程, 2017, 17(15): 65-70. doi: 10.3969/j.issn.1671-1815.2017.15.009Zheng Qiang, Yang Ri-jie, Chen Jia-qi, et al. Research on Dispersion Errors of Helicopter’s Airdrop Torpedo[J]. Science Technology and Engineering, 2017, 17(15): 65-70. doi: 10.3969/j.issn.1671-1815.2017.15.009
|
[64] |
温志文, 杨智栋, 王力竟. 空投鱼雷系统建模与空中弹道仿真研究[J]. 弹箭与制导学报, 2019, 39(5): 63-66,72. doi: 10.15892/j.cnki.djzdxb.2019.05.015Wen Zhi-wen, Yang Zhi-dong, Wang Li-jing. Modeling of the Air-Dropped Torpedo System and the Simulation Research of the Air Trajectory[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(5): 63-66,72. doi: 10.15892/j.cnki.djzdxb.2019.05.015
|
[65] |
陈洋, 吴亮, 曾国伟, 等. 带环形密闭气囊弹体入水冲击过程的数值分析[J]. 爆炸与冲击, 2018, 38(5): 1155-1164. doi: 10.11883/bzycj-2017-0387Chen Yang, Wu Liang, Zeng Guo-wei, et al. Numerical Analysis of the Water Entry Process of a Projectile with a Circular Airbag[J]. Explosion and Shock Waves, 2018, 38(5): 1155-1164. doi: 10.11883/bzycj-2017-0387
|
[66] |
石汉成, 蒋培, 程锦房. 头部形状对水雷入水载荷及水下弹道影响的数值仿真分析[J]. 舰船科学技术, 2010, 31(10): 104-107. doi: 10.3404/j.issn.1672-7649.2010.10.027Shi Han-cheng, Jiang Pei, Cheng Jin-fang. Research on Numerical Simulation of Mine Water-Entry Impact Acceleration and Underwater Ballistic Trajectory under the Different Mine’s Head Shape[J]. Ship Science and Technology, 2010, 31(10): 104-107. doi: 10.3404/j.issn.1672-7649.2010.10.027
|
[67] |
卢丙举, 朱珠. 细长前锥段超空泡航行器高速入水的载荷数值模拟[J]. 舰船科学技术, 2017, 39(8): 119-123. doi: 10.3404/j.issn.1672-7649.2017.08.025Lu Bing-ju, Zhu Zhu. Numerical Research on Load of a Super-Cavity Vehicle with Cone-Shaped Segment at High-Speed Water-Entry[J]. Ship Science and Technology, 2017, 39(8): 119-123. doi: 10.3404/j.issn.1672-7649.2017.08.025
|
[68] |
Guo Z, Zhang W, Wang C. Experimental and Theoretical Study on the High-Speed Horizontal Water Entry Behaviors of Cylindrical Projectiles[J]. Journal of Hydrodynamics, Ser. B, 2012, 24(2): 217-225. doi: 10.1016/S1001-6058(11)60237-0
|
[69] |
Guo Z, Zhang W, Xiao X, et al. An Investigation into Horizontal Water Entry Behaviors of Projectiles with Different Nose Shapes[J]. International Journal of Impact Engineering, 2012, 49(2): 43-60.
|
[70] |
杨宇. 细长杆头型航行体高速入水载荷特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
|
[71] |
Hincley W M, Yang J C S. Analysis of Rigid Polyurethane Foam as a Shock Mitigator[J]. Experimental Mechanics, 1975, 15: 177-183. doi: 10.1007/BF02319143
|
[72] |
宣建明, 宋志平, 严忠汉. 鱼雷入水缓冲保护头帽解体试验研究[J]. 鱼雷技术, 1999, 7(2): 45-50.
|
[73] |
徐新栋, 李建辰, 曹小娟. 鱼雷缓冲头帽入水冲击性能研究[J]. 鱼雷技术, 2012, 20(3): 161-165.Xu Xin-dong, Li Jian-chen, Cao Xiao-juan. Water-entry Impact Performance of Torpedo’s Cushion Nose Cap[J]. Torpedo Technology, 2012, 20(3): 161-165.
|
[74] |
王永虎, 石秀华, 王鹏. 雷弹入水冲击动态缓冲性能分析[J]. 西北工业大学学报, 2009, 27(5): 707-712. doi: 10.3969/j.issn.1000-2758.2009.05.023Wang Yong-hu, Shi Xiu-hua, Wang Peng. Exploring Analysis of Dynamic Cushioning Properties of Water-entry Missile’s Shock Mitigator[J]. Journal of Northwestern Polytechnical University, 2009, 27(5): 707-712. doi: 10.3969/j.issn.1000-2758.2009.05.023
|
[75] |
Robert A S, Margaret R M, Paul A L. Method of Producing Missile Nose Cones: 20100326182A1[P]. 2009-06-25.
|
[76] |
Wu S Y, Shao Z Y, Feng S S, et al. Water-entry Behavior of Projectiles under the Protection of Polyurethane Buffer Head[J]. Ocean Engineering, 2020, 197: 106890. doi: 10.1016/j.oceaneng.2019.106890
|
[77] |
Shi Y, Gao X F, Pan G. Design and Load Reduction Performance Analysis of Mitigator of AUV during High-speed Water Entry[J]. Ocean Engineering, 2019, 181: 314-329. doi: 10.1016/j.oceaneng.2019.03.062
|
[78] |
施瑶, 刘振鹏, 潘光, 等. 航行体梯度密度式头帽结构设计及降载性能分析[J]. 力学学报, 2022, 54(4): 939-953. doi: 10.6052/0459-1879-21-620Shi Yao, Liu zhen-peng, Pan Guang, et al. Structural Design and Load Reduction Performance Analysis of Gradient Density Head Cap of Vehicle[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 939-953. doi: 10.6052/0459-1879-21-620
|
[79] |
张学广, 边金尧, 方世武. Д形圆柱体大角度撞水载荷计算及缓冲问题的研究[J]. 中国舰船研究, 2007, 2(5): 30-32, 41. doi: 10.3969/j.issn.1673-3185.2007.05.007Zhang Xue-guang, Bian Jin-rao, Sun Shi-wu. Water Impact Load Calculation and Buffering Design of Д Type Cylinder Structure at Large Angle[J]. Chinese Journal of Ship Research, 2007, 2(5): 30-32, 41. doi: 10.3969/j.issn.1673-3185.2007.05.007
|
[80] |
潘龙, 王焕然, 姚尔人, 等. 头部喷气平头圆柱体入水缓冲机制研究[J]. 工程热物理学报, 2015, 36(8): 1691-1695.Pan Long, Wang Huan-ran, Yao Er-ren, et al. Mechanism Research on the Water-Entry Impact of the Head-Jetting Flat Cylinder[J]. Journal of Engineering Thermophysics, 2015, 36(8): 1691-1695.
|
[81] |
刘华坪, 余飞鹏, 韩冰, 等. 头部喷气影响航行体入水载荷的数值模拟[J]. 工程热物理学报, 2019, 40(2): 300-305.Liu Hua-ping, Yu Fei-peng, Han Bing, et al. Numerical Simulation Study on Influence of Top Jet in Object Water Entering Impact[J]. Journal of Engineering Thermophysics, 2019, 40(2): 300-305.
|
[82] |
赵海瑞, 施瑶, 潘光. 头部喷气航行器高速入水空泡特性数值分析[J]. 西北工业大学学报, 2021, 39(4): 810-817. doi: 10.1051/jnwpu/20213940810Zhao Hai-rui, Shi Yao, Pan Guang. Numerical Simulation of Cavitation Characteristics in High-Speed Water Entry of Head-Jetting Underwater Vehicle[J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 810-817. doi: 10.1051/jnwpu/20213940810
|
[83] |
Ruggaber W. BARRACUDA—Guidance and Control of a Supercavitating High Speed UW(Underwater) Missile[J]. Naval Forces, 2006, 27(5): 44-49.
|
[84] |
庄芷渔. 挪威Cav-X超空泡水下枪弹[J]. 兵器知识, 2019, 8: 35-37.
|