Research Progress and Prospects of Aluminum-Water Batteries
-
摘要: 随着海洋活动的增多和无人水下航行器(UUV)的不断发展, 对水下动力电源的需求日益增加。Al具有高比容、高电化学活性以及低成本等优点, 是一种极具发展前景的阳极材料。以Al合金为阳极、析氢材料为阴极、海水为电解液的Al-水电池的比能量和比功率分别可达400 Wh/kg和35 W/L, 被广泛应用于航天、汽车及军事等不同领域。文中阐述了Al-水电池的工作原理; 归纳了近期Al合金阳极、析氢阴极以及电解液材料的研究进展; 概括了Al-水电池样机的发展历程及现阶段存在的问题; 列举了Al-水电池在UUV、水下能源站及水下预置武器系统等方面的应用; 最后, 分析了Al-水电池的优缺点以及未来的发展方向, 以期对未来应用于UUV、海上浮标及水下工作站等水下装备的Al-水电池的研究发展提供参考。Abstract: The demand for underwater power sources is increasing as marine activities increase, and unmanned undersea vehicles(UUVs) develop. Aluminum is a promising anode material due to its high specific capacity, high electrochemical activity, and low cost. Aluminum-water batteries with aluminum alloy as anode, hydrogen evolution material as cathode, and seawater as electrolyte have specific energy and specific power of 400 Wh/kg and 35 W/L, respectively. These batteries are widely applied in aerospace, automotive, military, and other fields. This paper elaborated on the working principle of aluminum-water batteries and reviewed the research progress of aluminum alloy anodes, hydrogen evolution cathodes, and electrolyte materials. Then, it summarized the development process and the existing challenges of aluminum-water battery prototypes and listed the applications of aluminum-water batteries in UUVs, underwater energy stations, and underwater preset weapon systems. Finally, this paper analyzed the advantages and disadvantages of aluminum-water batteries, as well as their future development direction, so as to provide a reference for the application of aluminum-water batteries in UUVs, oceanographic buoys, underwater workstations, and other underwater equipment in the future.
-
Key words:
- unmanned undersea vehicle /
- Al-water batteries /
- Al alloy /
- anode
-
表 1 不同种类储能电池性能比较
Table 1. Comparison of different types of energy storage batteries
电池 比能量
/(Wh/kg)比功率 特点 Li离子电池 150~265 300~1 500 W/kg 良好的循环稳定性, 高能量密度; 但安全性低, 成本高 Zn离子电池 50~200 10~600 W/kg 安全性高, 价格低; 但Zn电极稳定性差 Mg-空气电池 1 000~1 200 200 W/kg 高能量密度; 存在镁的腐蚀、电池极化问题 Al-水电池 400~800 35~100 W/L 比能高安全性好, 无需携带氧气; 但存在Al阳极自腐蚀问题 表 2 不同析氢材料性能比较
Table 2. Comparison of performance of hydrogen evolution reaction of different materials
材料 η10/(mV) b Co 14 94 Cu 61 152 MoS2 120 44 CoS 59 56 CoP 86 69 表 3 Al-水电池在不同电解液中性能比较
Table 3. Comparison of performance of aluminum-water battery in different electrolytes
电解质 ICorr/ISC VOC/V ISC/(mA/cm2) 5 mol/L HCl(H2O) 0.70 1.21~1.60 140 5 mol/L NaOH(H2O) 0.60 1.21~1.55 94 0.5 mol/L KOH(EtOH) 0.02 1.51 0.4 5 mol/L KOH(MeOH) 0.01 1.10~1.55 12 KOH(BMIM-Tf2N) 0 1.72 0.002 AlCl3(BMIM-PF6) 0 0.90 0.4 -
[1] Albertus P, Babinec S, Litzelman S, et al. Status and chal lenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nature Energy, 2017, 3(185): 16-21. [2] Cheng F, Liang J, Tao Z, et al. Functional materials for rechargeable batteries[J]. Advanced Materials, 2011, 23(15): 1695-1715. doi: 10.1002/adma.201003587 [3] Zhao Y, Adair K R, Sun X. Recent developments and insights into the understanding of Na-metal anodes for Na-metal batteries[J]. Energy & Environmental Science, 2018, 11(10): 2673-2695. [4] Zheng X, Ahmad T, Chen W. Challenges and strategies on Zn electrodeposition for stable znion batteries[J]. Energy Storage Materials, 2021, 39: 365-394. doi: 10.1016/j.ensm.2021.04.027 [5] 宋强, 卢凯发, 赵满. 铝空(氧)电池与铝水电池水下应用可行性分析[J]. 船电技术, 2020, 40(8): 25-28. doi: 10.3969/j.issn.1003-4862.2020.08.007Song Qiang, Lu Kaifa, Zhao Man. Feasibility analysis of underwater application of aluminum-air(oxygen) and aluminum-water cell[J]. Marine Electric, 2020, 40(8): 25-28. doi: 10.3969/j.issn.1003-4862.2020.08.007 [6] Mallick S, Raj C R. Aqueous rechargeable Zn-ion batteries: strategies for improving the energy storage performance[J]. ChemSusChem, 2021, 14(9): 1987-2022. doi: 10.1002/cssc.202100299 [7] Urbach H B, Icenhower D E, Cervi M C, et al. Electrochemical cell using lithium-aluminum alloy anode and aqueous electrolyte: US3980498A[P]. 1976-09-14. [8] 李振亚, 余远彬, 秦学, 等. 铝-水电池的研究[J]. 电源技术, 1997, 21(1): 11-14,27.Li Zhenya, Yu Yuanbin, Qin Xue, et al. Studies of AI-H2O battery[J]. Chinese Journal of Power Sources, 1997, 21(1): 11-14,27. [9] Shen P K, Tseung A C C, Kuo C. Development of an aluminium/sea water battery for sub-sea applications[J]. Journal of Power Sources, 1994, 47(1-2): 119-127. doi: 10.1016/0378-7753(94)80055-3 [10] Pino M, Herranz D, Chacon J, et al. Carbon treated commercial aluminium alloys as anodes for aluminium-air batteries in sodium chloride electrolyte[J]. Journal of Power Sources, 2016, 326(15): 296-302. [11] 马正青, 黎文献, 余琨, 等. 新型铝合金阳极的腐蚀行为[J]. 表面技术, 2002, 31(4): 17-20. doi: 10.3969/j.issn.1001-3660.2002.04.006Ma Zhengqing, Li Wenxian, Yu Kun, et al. Study on the corrosion of new aluminum alloy[J]. Surface Technology, 2002, 31(4): 17-20. doi: 10.3969/j.issn.1001-3660.2002.04.006 [12] 田文增, 陈小华, 林立. 电池用铝合金阳极材料的研究进展[J]. 船电技术, 2008(6): 364-366. doi: 10.3969/j.issn.1003-4862.2008.06.018Tian Wenzeng, Chen Xiaohua, Lin Li. Progress in aluminum alloy anodes for alkaline aluminum battery[J]. Marine Electric, 2008(6): 364-366. doi: 10.3969/j.issn.1003-4862.2008.06.018 [13] Linjee S, Moonngam S, Klomjit P, et al. Corrosion behaviour improvement from the ultrafine-grained Al-Zn-In alloys in Al-air battery[J]. Energy Reports, 2022, 8: 5117-5128. doi: 10.1016/j.egyr.2022.03.132 [14] Ren J M, Liu T, Zhang J, et al. Spray-formed commercial aluminum alloy anodes with suppressed self-corrosion for Al-air batteries[J]. Journal of Power Sources, 2022, 524: 231082. doi: 10.1016/j.jpowsour.2022.231082 [15] Peng G S, Huang J, Gu Y C, et al. Self-corrosion, electrochemical and discharge behavior of commercial purity Al anode via Mn modification in Al-air battery[J]. Rare Metals, 2021, 40(12): 3501-3511. doi: 10.1007/s12598-020-01687-9 [16] Gao J X, Fan H F, Wang E D, et al. Exploring the effect of magnesium content on the electrochemical performance of aluminum anodes in alkaline batteries[J]. Electrochimica Acta, 2020, 353: 136497. doi: 10.1016/j.electacta.2020.136497 [17] Palanysami S, Rajendhran N, Srinivasan S, et al. A novel Nano-YSZ-Al alloy anode for Al-air battery[J]. Journal of Applied Electrochemistry, 2021, 51: 345-356. doi: 10.1007/s10800-020-01493-2 [18] Cabrini M, Lorenzi S, Pastore T, et al. Evaluation of corrosion resistance of Al-10Si-Mg alloy obtained by means of direct metal laser sintering[J]. Journal of Materials Processing Technology, 2016, 231: 326-335. doi: 10.1016/j.jmatprotec.2015.12.033 [19] Wu Z B, Zhang H T, Zou J, et al. Effect of microstructure on discharge performance of Al-0.8Sn-0.05Ga-0.9Mg-1.0Zn (wt%) alloy as anode for seawater-activated battery[J]. Materials and Corrosion, 2020, 71(10): 1680-1690. doi: 10.1002/maco.202011663 [20] Han Z H, Xu Y, Zhou S G, et al. The effect of annealing on electrochemical performances of an Al-Sn-Ga-Mg alloy as an anode for Al-air batteries in alkaline electrolytes[J]. Journal of the Electrochemical Society, 2020, 167: 100541. doi: 10.1149/1945-7111/ab9b97 [21] Lasia A. Mechanism and kinetics of the hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2019, 44(36): 19484-19518. doi: 10.1016/j.ijhydene.2019.05.183 [22] Anantharaj S. Hydrogen evolution reaction on Pt and Ru in alkali with volmer-step promotors and electronic structure modulators[J]. Current Opinion in Electrochemistry, 2022, 33: 100961. doi: 10.1016/j.coelec.2022.100961 [23] 程煜, 徐新楠, 张莉芳, 等. 析氢电催化剂的研究进展[J]. 纳米技术, 2021, 11(3): 155-165. doi: 10.12677/NAT.2021.113019Cheng Yu, Xu Xinnan, Zhang Lifang, et al. Research progress of electrocatalyst for hydrogen evolution reaction[J]. Hans Journal of Nanotechnology, 2021, 11(3): 155-165. doi: 10.12677/NAT.2021.113019 [24] 杨苗, 刘志微, 李攀. 泡沫镍负载二硫化钼复合材料电催化析氢性能研究[J]. 化学工程与技术, 2022, 12(4): 263-268. doi: 10.12677/HJCET.2022.124035Yang Miao, Li Zhiwei, Li Pan. Nickel foam supported MoS2 composites for electrocatalytic hydrogen evolution[J]. Hans Journal of Chemical Engineering and Technology, 2022, 12(4): 263-268. doi: 10.12677/HJCET.2022.124035 [25] Huang C Q, Yu L, Zhang W, et al. N-doped Ni-Mo based sulfides for high-efficiency and stable hydrogen evolution reaction[J]. Applied Catalysis B: Environmental, 2020, 276: 119137. doi: 10.1016/j.apcatb.2020.119137 [26] Eftekhari A. Electrocatalysts for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11053-11077. doi: 10.1016/j.ijhydene.2017.02.125 [27] 范汇吉, 孙虎元, 孙立娟, 等. 电解液的浓度和温度对铝空气电池负极性能的影响[J]. 腐蚀科学与防护技术, 2012, 24(2): 149-152.Fan Huiji, Sun Huyuan, Sun Lijuan, et al. Effects of chloride ion concentration and temperature on anode performance of aluminum/air batteries[J]. Corrosion Science and Protection Technology, 2012, 24(2): 149-152. [28] 梁明岗, 文九巴, 贺俊光, 等. 电解液温度对铝阳极合金电化学性能的影响[J]. 腐蚀与防护, 2015, 36(5): 476-479,492.Liang Minggang, Wen Jiuba, He Junguang et al. Influence of solution temperature on electrochemical performance of aluminum anode alloy[J]. Corrosion & Protection, 2015, 36(5): 476-479,492. [29] 卢凌彬. 铝-空气电池用铝合金阳极与电解液添加剂的研究[D]. 长沙: 中南大学, 2002. [30] Harchegani R K, Riahi A R. Effect of cerium chloride on the self-corrosion and discharge activity of aluminum anode in alkaline aluminum-air batteries[J]. Journal of the Electrochemical Society, 2022, 169(3): 030542. doi: 10.1149/1945-7111/ac5c06 [31] Gu Y Y, Liu Y J, Tong Y W, et al. Improving discharge voltage of Al-Air batteries by Ga3+ additives in NaCl-Based electrolyte[J]. Nanomaterials, 2022, 12(8): 1336. doi: 10.3390/nano12081336 [32] Deyab M A. 1-Allyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide as an effective organic additive in aluminum-air battery[J]. Electrochimica Acta, 2017, 244: 178-183. doi: 10.1016/j.electacta.2017.05.116 [33] 许超. 铝空气电池电解液添加剂的研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [34] Mckay I S, Macdonald R R, Milnes T B. Anaerobic aluminium-water electrochemical cell: WO2014133614 A2[P]. 2019-01-31. [35] 魏文英, 郑邯勇, 林碧亮. 铝-水燃料电池技术发展现状[C]//OSEC首届兵器工程大会论文集. 重庆: 中国兵工学会, 2017. [36] Aquanautics Corporation. Quarterly report on long endurance underwater power system[R]. United Sates, N. P.: [s.n.], 1989. [37] Shen P K, Tseung A, Kuo C. Design of a dome-shaped aluminium water battery[J]. Journal of Applied Electrochemistry, 1994, 24: 145-148. [38] Pulsone N B, Hart D P, Siegel A M, et al. Aluminum-water energy system for autonomous undersea vehicles[J]. Lincoln Laboratory Journal, 2017, 22(2): 79-90. [39] Robert H. Cartridges for controlled hydrogen generation based on galvanic zn water reaction[C]//European Hydrogen Energy Conference. Seville, Spain: Fraunhofer, 2014 [40] 张林森, 王双元, 王为, 等. 铝-水电池制氢体系的结构设计[J]. 电源技术, 2007, 31(5): 393-395. doi: 10.3969/j.issn.1002-087X.2007.05.013Zhang Linsen, Wang Shuangyuan, Wang Wei, et al. Structural design of aluminum-water hydrogen storage cell[J]. Chinese Journal of Power Sources, 2007, 31(5): 393-395. doi: 10.3969/j.issn.1002-087X.2007.05.013 [41] 王二东, 刘敏, 孙公权. 一种金属海水燃料电池组: CN111326757A[P]. 2020-06-23. [42] 杨灿军, 吴泽亮, 夏庆超, 等. 一种铝-水电化学电池系统: CN113690469A[P]. 2021-11-23. [43] 秦嗣牧, 林鑫, 毛文鸣, 等. 一种海上应急灯: CN10957 8907A[P]. 2019-04-05. [44] 朱九香, 张沈卫. 北斗海上救生定位集成系统: CN112 526552A[P]. 2021-03-19.