• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于声学黑洞的水下航行器承压板减振设计及性能研究

马锐磊 白建斌 刘一鸣 田文强 田丰华 刘礼文

马锐磊, 白建斌, 刘一鸣, 等. 基于声学黑洞的水下航行器承压板减振设计及性能研究[J]. 水下无人系统学报, 2023, 31(6): 934-941 doi: 10.11993/j.issn.2096-3920.2022-0045
引用本文: 马锐磊, 白建斌, 刘一鸣, 等. 基于声学黑洞的水下航行器承压板减振设计及性能研究[J]. 水下无人系统学报, 2023, 31(6): 934-941 doi: 10.11993/j.issn.2096-3920.2022-0045
MA Ruilei, BAI Jianbin, LIU Yiming, TIAN Wenqiang, TIAN Fenghua, LIU Liwen. Vibration Reduction Design and Performance Research of Bearing Plate of Undersea Vehicle Based on Acoustic Black Hole[J]. Journal of Unmanned Undersea Systems, 2023, 31(6): 934-941. doi: 10.11993/j.issn.2096-3920.2022-0045
Citation: MA Ruilei, BAI Jianbin, LIU Yiming, TIAN Wenqiang, TIAN Fenghua, LIU Liwen. Vibration Reduction Design and Performance Research of Bearing Plate of Undersea Vehicle Based on Acoustic Black Hole[J]. Journal of Unmanned Undersea Systems, 2023, 31(6): 934-941. doi: 10.11993/j.issn.2096-3920.2022-0045

基于声学黑洞的水下航行器承压板减振设计及性能研究

doi: 10.11993/j.issn.2096-3920.2022-0045
详细信息
    作者简介:

    马锐磊(1987-), 男, 硕士, 高级工程师, 研究方向为振动噪声控制技术

  • 中图分类号: TJ630.1; U663.7

Vibration Reduction Design and Performance Research of Bearing Plate of Undersea Vehicle Based on Acoustic Black Hole

  • 摘要: 为了减少传递到水下航行器探测声学阵列承压板的振动能量, 基于声学黑洞原理设计了一种减振圆板附属结构。采用加速度振级落差表征其减振性能, 并分别开展了激振器轴向和径向激励下的承压板减振性能试验。研究结果表明,该减振圆板结构在50 Hz~10 kHz的频率范围内减振效果良好, 充分说明了文中设计的减振圆板附属结构具有轻质、高效、宽频的减振特点, 拥有广泛的潜在应用价值。

     

  • 图  1  承压板尺寸图

    Figure  1.  Bearing plate size

    图  2  ABH圆板尺寸图

    Figure  2.  ABH circular plate size

    图  3  ABH圆板装配模型

    Figure  3.  Assembly model of the ABH circular plate

    图  4  ABU圆板仿真模型

    Figure  4.  Simulation Modal of ABH circular plate

    图  5  不同ε时响应点R传递损失函数曲线

    Figure  5.  Transfer loss function curves of response point R at different ε

    图  6  不同 h 时响应点 R 传递损失函数曲线

    Figure  6.  Transfer loss function curves of response point R at different h

    图  7  加工样机

    Figure  7.  Prototype

    图  8  轴向激励试验原理图

    Figure  8.  Principle of axial excitation test

    图  9  单频激励下振级落差对比曲线

    Figure  9.  Curves of vibration level drop under single-frequency excitation

    图  10  扫频激励下振级落差对比曲线

    Figure  10.  Curves of vibration level drop under sweep-frequency excitation

    图  11  径向激励试验原理图

    Figure  11.  Principle of radial excitation test

    图  12  承压板减振性能测试频带划分

    Figure  12.  Frequency band division of bearing plate during vibration reduction performance test

    图  13  轴向激励响应点加速度频谱

    Figure  13.  Response point acceleration spectrum under axial excitation

    图  14  径向激励响应点加速度频谱

    Figure  14.  Response point acceleration spectrum under radial excitation

    图  15  轴向激励响应点振级落差频谱

    Figure  15.  Response point vibration level drop spectrum under axial excitation

    图  16  径向激励响应点振级落差频谱

    Figure  16.  Response point vibration level drop spectrum under radial excitation

    表  1  ${\boldsymbol{\varepsilon }}$不同时圆板厚度

    Table  1.   Thickness of round plate with different ε

    $\varepsilon $值ABH圆板总厚度/mm
    0.000 42.55
    0.000 53.11
    0.000 63.67
    0.000 74.24
    0.000 84.80
    0.000 95.36
    0.001 05.92
    0.001 16.49
    0.001 27.05
    0.001 37.61
    下载: 导出CSV

    表  2  不同ε时响应点R加速度级

    Table  2.   Acceleration level of response point R at different ε

    $\varepsilon $值响应点加速度级/dB
    0.000 5135.943 0
    0.000 6165.671 9
    0.000 7151.193 3
    0.000 8135.931 6
    0.000 9135.474 7
    0.001 0135.002 0
    0.001 1155.683 0
    下载: 导出CSV

    表  3  不同h时响应点R加速度级

    Table  3.   Acceleration level of response point R at different h

    h/mm响应点加速度级/dB
    0.1143.15
    0.2130.91
    0.3129.88
    0.4143.97
    0.5150.02
    0.6152.02
    0.7158.91
    0.8144.19
    0.9131.19
    1.0131.14
    下载: 导出CSV

    表  4  单频激励下振级落差对比

    Table  4.   Comparison of vibration level drop under single-frequency excitation

    频率/Hz圆板+单层
    ABH板/dB
    圆板+单层ABH板+
    VHB阻尼/dB
    100 12.4711.92
    20010.2011.88
    3004.524.65
    4002.65−1.11
    50014.6015.71
    60027.6225.80
    7008.91−2.76
    80023.0625.07
    90023.3619.82
    1 00032.2927.09
    2 00019.4418.30
    3 00020.3624.06
    4 0005.3314.29
    5 00021.0719.81
    6 0000.12−2.77
    7 0005.918.74
    8 000−6.716.13
    9 00010.5514.42
    10 0009.5513.47
    下载: 导出CSV

    表  5  扫频激励下振级落差对比

    Table  5.   Comparison of vibration level drop under sweep-frequency excitation

    频率
    /Hz
    圆板+单层
    ABH板/dB
    圆板+单层ABH板+
    VHB阻尼/dB
    50~5001.961.24
    500~1 0002.824.21
    1 000~2 00018.2515.42
    2 000~3 00025.2025.15
    3 000~4 00010.116.66
    4 000~5 00010.6010.46
    5 000~6 00016.2915.17
    6 000~7 00013.260.53
    7 000~8 0002.173.04
    8 000~9 0007.046.75
    9 000~10 0008.9210.23
    下载: 导出CSV

    表  6  振级落差测试结果

    Table  6.   Test results of vibration level drop

    频率/Hz承压板/dB 承压板+单层
    ABH板/dB
    承压板+双层
    ABH板/dB
    轴向
    激励
    径向
    激励
    轴向
    激励
    径向
    激励
    轴向
    激励
    径向
    激励
    50~500 12.58 10.12 12.85 17.14 13.01 13.22
    500~1 000 4.59 8.24 7.91 16.19 4.84 9.26
    1 000~1 500 6.45 17.36 7.58 22.60 6.02 22.16
    1 500~2 000 21.43 20.55 24.36 34.11 23.71 33.27
    50~1 000 6.83 9.41 9.42 21.32 6.27 11.62
    50~2 000 10.20 12.05 15.36 27.12 14.53 17.78
    50~10 000 1.66 3.23 9.09 11.45 11.80 11.80
    100~200 12.85 11.73 13.47 13.73 13.68 16.85
    200~300 12.69 12.88 13.28 14.74 13.31 16.49
    下载: 导出CSV
  • [1] Fahy F, Thompson D. Fundamentals of sound and vibration[M]. 2th ed. New York: CRC Press, 2015.
    [2] 王红瑞, 曹小娟, 尹韶平, 等. 鱼雷振动试验系统结构传递特性影响因素分析[J]. 水下无人系统学报, 2019, 27(5): 574-579.

    Wang Hongrui, Cao Xiaojuan, Yin Shaoping, et al. Analysis on the factors influencing structural transfer characteristic of torpedo vibration test system[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 574-579.
    [3] 耿小明, 尹韶平, 周景军, 等. 圆柱壳体振动主动控制作动器位置优化方法[J]. 水下无人系统学报, 2020, 28(6): 650-656.

    Geng Xiaoming, Yin Shaoping, Zhou Jingjun et al. Position optimization method for an active vibration control actuator of a cylindrical shell[J]. Journal of Unmanned Undersea Systems, 2020, 28(6): 650-656.
    [4] Bowyer E P, Krylov V V. Damping of flexural vibrations in turbofan blades using the acoustic black hole effect[J]. Applied Acoustics, 2014, 76: 359-365. doi: 10.1016/j.apacoust.2013.09.009
    [5] Bowyer E P, O’Boy D J, Krylov V V, et al. Experimental investigation of damping flexural vibrations in plates containing tapered indentations of power-law profile[J]. Applied Acoustics, 2013, 74(4): 553-560. doi: 10.1016/j.apacoust.2012.10.004
    [6] Krylov V. Acoustic black holes: Recent developments in the theory and applications[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2014, 61(8): 1296-1306. doi: 10.1109/TUFFC.2014.3036
    [7] Feurtado P A, Conlon, S C. Wavenumber transform analysis for acoustic black hole design[J]. The Journal of the Acoustical Society of America, 2016, 140(1): 718-727. doi: 10.1121/1.4959023
    [8] Ma L, Cheng L. Sound radiation and transonic boundaries of a plate with an acoustic black hole[J]. The Journal of the Acoustical Society of America, 2019, 145(1): 164-172. doi: 10.1121/1.5081680
    [9] O’Boy D J, Krylov V V, Kralovic V. Damping of flexural vibrations in rectangular plates using the acoustic black hole effect[J]. Journal of Sound and Vibration, 2010, 329: 4672-4688. doi: 10.1016/j.jsv.2010.05.019
    [10] Bowyer E P, Nash P, Krylov V V. Damping of flexural vibrations in glass fiber composite plates and honeycomb sandwich panels containing indentations of power-law profile[J]. Journal of the Acoustical Society of America, 2013, 132(3): 2041.
    [11] Li X, Ding Q. Analysis on vibration energy concentration of the one-dimensional wedge-shaped acoustic black hole structure[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(10): 2137-2148. doi: 10.1177/1045389X18758184
    [12] 曾鹏云, 郑玲, 左益芳, 等. 基于半解析法的一维圆锥形声学黑洞梁能量聚集效应研究[J]. 噪声与振动控制, 2018, 38(s1): 210-214. doi: 10.3969/j.issn.1006-1355.2018.Z1.044

    Zeng Pengyun, Zheng Ling, Zuo Yifang, et al. Analysis of the energy concentration effect of flexural vibrations in tapered rods with power-law profile based on semi analytical method[J]. Noise and Vibration Control, 2018, 38(s1): 210-214. doi: 10.3969/j.issn.1006-1355.2018.Z1.044
    [13] 何璞, 王小东, 季宏丽, 等. 基于声学黑洞的盒式结构全频带振动控制研究[J]. 航空学报, 2020, 41(4): 129-138.

    He Pu, Wang Xiaodong, Ji Hongli, et al. Full-band vibration control of box-type structure with acoustic black hole[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 129-138.
    [14] 王小东, 秦一凡, 季宏丽, 等. 基于声学黑洞效应的直升机驾驶舱宽带降噪研究[J]. 航空学报, 2020, 41(10): 223-233. doi: 10.7527/S1000-6893.2020.23831

    Wang Xiaodong, Qin Yifan, Ji Hongli, et al. Broadband noise reduction inside the helicopter cockpit by acoustic black hole effect[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 223-233. doi: 10.7527/S1000-6893.2020.23831
    [15] 季宏丽, 黄薇, 裘进浩, 等. 声学黑洞结构应用中的力学问题[J]. 力学进展, 2017, 47(1): 333-384.

    Ji Hongli, Huang Wei, Qiu Jinhao, et al. Mechanics problems in application of acoustic black hole structure[J]. Advances in Mechanics, 2017, 47(1): 333-384.
  • 加载中
图(16) / 表(6)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  18
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 修回日期:  2022-10-12
  • 录用日期:  2022-11-17
  • 网络出版日期:  2023-11-17

目录

    /

    返回文章
    返回
    服务号
    订阅号