Vibration Reduction Design and Performance Research of Bearing Plate of Undersea Vehicle Based on Acoustic Black Hole
-
摘要: 为了减少传递到水下航行器探测声学阵列承压板的振动能量, 基于声学黑洞原理设计了一种减振圆板附属结构。采用加速度振级落差表征其减振性能, 并分别开展了激振器轴向和径向激励下的承压板减振性能试验。研究结果表明,该减振圆板结构在50 Hz~10 kHz的频率范围内减振效果良好, 充分说明了文中设计的减振圆板附属结构具有轻质、高效、宽频的减振特点, 拥有广泛的潜在应用价值。Abstract: In order to reduce the vibration energy transferred to the bearing plate of an undersea vehicle for detecting acoustic arrays, an accessory round plate structure for vibration reduction was designed based on the acoustic black hole principle. The vibration reduction performance was characterized by the vibration level drop of acceleration, and the vibration reduction performance tests of the bearing plate under axial and radial excitation of the shaker were carried out. The results show that the vibration reduction effect of the round plate structure is good in the frequency range of 50 Hz–10 kHz, fully showing that the accessory round plate structure designed in this paper has the vibration reduction characteristics of light weight, high efficiency, and wide frequency and has a wide range of potential application value.
-
表 1
${\boldsymbol{\varepsilon }}$ 不同时圆板厚度Table 1. Thickness of round plate with different ε
$\varepsilon $值 ABH圆板总厚度/mm 0.000 4 2.55 0.000 5 3.11 0.000 6 3.67 0.000 7 4.24 0.000 8 4.80 0.000 9 5.36 0.001 0 5.92 0.001 1 6.49 0.001 2 7.05 0.001 3 7.61 表 2 不同ε时响应点R加速度级
Table 2. Acceleration level of response point R at different ε
$\varepsilon $值 响应点加速度级/dB 0.000 5 135.943 0 0.000 6 165.671 9 0.000 7 151.193 3 0.000 8 135.931 6 0.000 9 135.474 7 0.001 0 135.002 0 0.001 1 155.683 0 表 3 不同h时响应点R加速度级
Table 3. Acceleration level of response point R at different h
h/mm 响应点加速度级/dB 0.1 143.15 0.2 130.91 0.3 129.88 0.4 143.97 0.5 150.02 0.6 152.02 0.7 158.91 0.8 144.19 0.9 131.19 1.0 131.14 表 4 单频激励下振级落差对比
Table 4. Comparison of vibration level drop under single-frequency excitation
频率/Hz 圆板+单层
ABH板/dB圆板+单层ABH板+
VHB阻尼/dB100 12.47 11.92 200 10.20 11.88 300 4.52 4.65 400 2.65 −1.11 500 14.60 15.71 600 27.62 25.80 700 8.91 −2.76 800 23.06 25.07 900 23.36 19.82 1 000 32.29 27.09 2 000 19.44 18.30 3 000 20.36 24.06 4 000 5.33 14.29 5 000 21.07 19.81 6 000 0.12 −2.77 7 000 5.91 8.74 8 000 −6.71 6.13 9 000 10.55 14.42 10 000 9.55 13.47 表 5 扫频激励下振级落差对比
Table 5. Comparison of vibration level drop under sweep-frequency excitation
频率
/Hz圆板+单层
ABH板/dB圆板+单层ABH板+
VHB阻尼/dB50~500 1.96 1.24 500~1 000 2.82 4.21 1 000~2 000 18.25 15.42 2 000~3 000 25.20 25.15 3 000~4 000 10.11 6.66 4 000~5 000 10.60 10.46 5 000~6 000 16.29 15.17 6 000~7 000 13.26 0.53 7 000~8 000 2.17 3.04 8 000~9 000 7.04 6.75 9 000~10 000 8.92 10.23 表 6 振级落差测试结果
Table 6. Test results of vibration level drop
频率/Hz 承压板/dB 承压板+单层
ABH板/dB承压板+双层
ABH板/dB轴向
激励径向
激励轴向
激励径向
激励轴向
激励径向
激励50~500 12.58 10.12 12.85 17.14 13.01 13.22 500~1 000 4.59 8.24 7.91 16.19 4.84 9.26 1 000~1 500 6.45 17.36 7.58 22.60 6.02 22.16 1 500~2 000 21.43 20.55 24.36 34.11 23.71 33.27 50~1 000 6.83 9.41 9.42 21.32 6.27 11.62 50~2 000 10.20 12.05 15.36 27.12 14.53 17.78 50~10 000 1.66 3.23 9.09 11.45 11.80 11.80 100~200 12.85 11.73 13.47 13.73 13.68 16.85 200~300 12.69 12.88 13.28 14.74 13.31 16.49 -
[1] Fahy F, Thompson D. Fundamentals of sound and vibration[M]. 2th ed. New York: CRC Press, 2015. [2] 王红瑞, 曹小娟, 尹韶平, 等. 鱼雷振动试验系统结构传递特性影响因素分析[J]. 水下无人系统学报, 2019, 27(5): 574-579.Wang Hongrui, Cao Xiaojuan, Yin Shaoping, et al. Analysis on the factors influencing structural transfer characteristic of torpedo vibration test system[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 574-579. [3] 耿小明, 尹韶平, 周景军, 等. 圆柱壳体振动主动控制作动器位置优化方法[J]. 水下无人系统学报, 2020, 28(6): 650-656.Geng Xiaoming, Yin Shaoping, Zhou Jingjun et al. Position optimization method for an active vibration control actuator of a cylindrical shell[J]. Journal of Unmanned Undersea Systems, 2020, 28(6): 650-656. [4] Bowyer E P, Krylov V V. Damping of flexural vibrations in turbofan blades using the acoustic black hole effect[J]. Applied Acoustics, 2014, 76: 359-365. doi: 10.1016/j.apacoust.2013.09.009 [5] Bowyer E P, O’Boy D J, Krylov V V, et al. Experimental investigation of damping flexural vibrations in plates containing tapered indentations of power-law profile[J]. Applied Acoustics, 2013, 74(4): 553-560. doi: 10.1016/j.apacoust.2012.10.004 [6] Krylov V. Acoustic black holes: Recent developments in the theory and applications[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2014, 61(8): 1296-1306. doi: 10.1109/TUFFC.2014.3036 [7] Feurtado P A, Conlon, S C. Wavenumber transform analysis for acoustic black hole design[J]. The Journal of the Acoustical Society of America, 2016, 140(1): 718-727. doi: 10.1121/1.4959023 [8] Ma L, Cheng L. Sound radiation and transonic boundaries of a plate with an acoustic black hole[J]. The Journal of the Acoustical Society of America, 2019, 145(1): 164-172. doi: 10.1121/1.5081680 [9] O’Boy D J, Krylov V V, Kralovic V. Damping of flexural vibrations in rectangular plates using the acoustic black hole effect[J]. Journal of Sound and Vibration, 2010, 329: 4672-4688. doi: 10.1016/j.jsv.2010.05.019 [10] Bowyer E P, Nash P, Krylov V V. Damping of flexural vibrations in glass fiber composite plates and honeycomb sandwich panels containing indentations of power-law profile[J]. Journal of the Acoustical Society of America, 2013, 132(3): 2041. [11] Li X, Ding Q. Analysis on vibration energy concentration of the one-dimensional wedge-shaped acoustic black hole structure[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(10): 2137-2148. doi: 10.1177/1045389X18758184 [12] 曾鹏云, 郑玲, 左益芳, 等. 基于半解析法的一维圆锥形声学黑洞梁能量聚集效应研究[J]. 噪声与振动控制, 2018, 38(s1): 210-214. doi: 10.3969/j.issn.1006-1355.2018.Z1.044Zeng Pengyun, Zheng Ling, Zuo Yifang, et al. Analysis of the energy concentration effect of flexural vibrations in tapered rods with power-law profile based on semi analytical method[J]. Noise and Vibration Control, 2018, 38(s1): 210-214. doi: 10.3969/j.issn.1006-1355.2018.Z1.044 [13] 何璞, 王小东, 季宏丽, 等. 基于声学黑洞的盒式结构全频带振动控制研究[J]. 航空学报, 2020, 41(4): 129-138.He Pu, Wang Xiaodong, Ji Hongli, et al. Full-band vibration control of box-type structure with acoustic black hole[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 129-138. [14] 王小东, 秦一凡, 季宏丽, 等. 基于声学黑洞效应的直升机驾驶舱宽带降噪研究[J]. 航空学报, 2020, 41(10): 223-233. doi: 10.7527/S1000-6893.2020.23831Wang Xiaodong, Qin Yifan, Ji Hongli, et al. Broadband noise reduction inside the helicopter cockpit by acoustic black hole effect[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 223-233. doi: 10.7527/S1000-6893.2020.23831 [15] 季宏丽, 黄薇, 裘进浩, 等. 声学黑洞结构应用中的力学问题[J]. 力学进展, 2017, 47(1): 333-384.Ji Hongli, Huang Wei, Qiu Jinhao, et al. Mechanics problems in application of acoustic black hole structure[J]. Advances in Mechanics, 2017, 47(1): 333-384. -