• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进WLSSVM的无人艇操纵性参数辨识

张海胜 董早鹏 杨莲 张铮淇 齐诗杰 李家康

张海胜, 董早鹏, 杨莲, 等. 基于改进WLSSVM的无人艇操纵性参数辨识[J]. 水下无人系统学报, 2023, 31(5): 687-695 doi: 10.11993/j.issn.2096-3920.2022-0044
引用本文: 张海胜, 董早鹏, 杨莲, 等. 基于改进WLSSVM的无人艇操纵性参数辨识[J]. 水下无人系统学报, 2023, 31(5): 687-695 doi: 10.11993/j.issn.2096-3920.2022-0044
ZHANG Haisheng, DONG Zaopeng, YANG Lian, ZHANG Zhengqi, QI Shijie, LI Jiakang. Identification of Unmanned Surface Vehicle Maneuverability Parameters Based on Improved WLSSVM[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 687-695. doi: 10.11993/j.issn.2096-3920.2022-0044
Citation: ZHANG Haisheng, DONG Zaopeng, YANG Lian, ZHANG Zhengqi, QI Shijie, LI Jiakang. Identification of Unmanned Surface Vehicle Maneuverability Parameters Based on Improved WLSSVM[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 687-695. doi: 10.11993/j.issn.2096-3920.2022-0044

基于改进WLSSVM的无人艇操纵性参数辨识

doi: 10.11993/j.issn.2096-3920.2022-0044
基金项目: 国家自然科学基金项目(51709214)
详细信息
    作者简介:

    张海胜(2000-), 男, 在读硕士, 主要研究方向为无人艇操纵性参数辨识

    通讯作者:

    董早鹏(1988-), 男, 博士, 副教授, 主要研究方向为船舶操纵性参数辩识、海洋无人航行器集群编队与控制

  • 中图分类号: TJ630.33; U661.33

Identification of Unmanned Surface Vehicle Maneuverability Parameters Based on Improved WLSSVM

  • 摘要: 为了实现高精度的无人艇操纵运动辨识建模, 针对最小二乘支持向量机(LSSVM)辨识无人艇2阶非线性响应模型时, 部分参数会辨识不准的问题, 设计了余弦处理方法, 对辨识模型进行重构; 为进一步提高辨识精度, 在此基础上根据数据加权思想, 结合引入变异策略的自适应粒子群算法, 提出了一种可对权值寻优的加权最小二乘支持向量机(WLSSVM)算法。基于仿真数据和实船数据的辨识结果表明, 余弦方法重构后的模型很好地解决了参数辨识不准的问题, 权值寻优后的WLSSVM进行参数辨识建模具有更高的预报精度。研究结果能够为无人艇操纵运动的高精度参数辨识建模提供参考。

     

  • 图  1  20°/20°Z形操纵运动仿真实验数据

    Figure  1.  Simulation experimental data of 20°/20° zigzag maneuvering motion

    图  2  基于仿真数据的变异APSO寻优

    Figure  2.  Optimization of mutation APSO based on simulation data

    图  3  基于LSSVM的艏向角及艏向角速度预报

    Figure  3.  Prediction of bow angle and bow angular velocity based on LSSVM

    图  4  10°/10°Z形操纵运动艏向角速度仿真

    Figure  4.  Simulation of bow angular velocity of 10°/10° zigzag maneuvering motion

    图  5  10°回转运动艏向角速度仿真

    Figure  5.  Simulation of bow angular velocity of 10° rotary motion

    图  6  基于实船试验数据的变异APSO寻优

    Figure  6.  Optimization of mutation APSO based on actual ship test data

    图  7  实船舵角数据

    Figure  7.  Rudder angle data of an actual ship

    图  8  基于实船数据的艏向角及艏向角速度预报

    Figure  8.  Prediction of bow angle and bow angular velocity based on actual ship data

    表  1  船舶模型参数

    Table  1.   Ship model parameters

    参数名${T_1}$${T_2}$${T_3}$K$\;\beta $${\delta _r}$
    参数值1.439 70.120 20.044 00.588 3−0.123 90.009 3
    下载: 导出CSV

    表  2  基于仿真数据的参数辨识结果

    Table  2.   Parameter identification results based on simulation data

    参数名真实值原始模型+LSSVM 模型重构+LSSVM 原始模型+变异APSO-WLSSVM 模型重构+变异APSO-WLSSVM
    辨识结果相对误差/%辨识结果相对误差/%辨识结果相对误差/%辨识结果相对误差/%
    ${T_1}$ 1.439 7 1.463 2 1.63 1.463 5 1.65 1.463 2 1.63 1.464 7 1.74
    ${T_2}$ 0.120 2 0.147 7 22.88 0.147 9 23.04 0.147 7 22.88 0.147 0 22.30
    ${T_3}$ 0.044 0 0.070 7 60.68 0.071 0 61.36 0.070 7 60.68 0.070 9 61.14
    K 0.588 3 0.587 9 −0.07 0.588 1 −0.03 0.587 9 −0.07 0.588 3 0
    $\beta $ −0.123 9 −0.134 6 8.64 −0.124 9 0.81 −0.134 6 8.64 −0.123 3 −0.48
    ${\delta _r}$ 0.009 3 0 −100.00 0.009 3 0 0 −100.00 0.009 3 0
    下载: 导出CSV

    表  3  基于仿真实验数据的辨识建模预报误差

    Table  3.   Prediction error of identification modeling based on simulation experimental data

    名称RMSE
    $ \psi $r
    原始模型+LSSVM8.704 40.317 8
    模型重构+LSSVM0.208 80.064 5
    模型重构+变异APSO-WLSSVM0.207 00.064 0
    下载: 导出CSV

    表  4  10°/10°Z形操纵运动及10°回转运动预报误差

    Table  4.   Prediction error of 10°/10° zigzag maneuvering motion and 10° rotary motion

    名称Z形操纵运动RMSE回转运动RMSE
    $ \psi $r$ \psi $r
    原始模型+LSSVM8.592 30.307 78.945 40.312 9
    模型重构+LSSVM0.101 90.039 70.184 90.009 6
    模型重构+变异APSO-WLSSVM0.101 10.039 40.137 30.009 0
    下载: 导出CSV

    表  5  无人艇部分参数

    Table  5.   Parameters of the USV

    垂线间长/m型宽/m吃水/m空船质量/t
    7.5002.6000.5672.970
    下载: 导出CSV

    表  6  基于实船数据的参数辨识结果

    Table  6.   Parameter identification results based on actual ship data

    参数名 原始模型+
    LSSVM
    模型重构+
    LSSVM
    模型重构+
    变异APSO-
    WLSSVM
    $ T_{1} $ 4.227 8 4.407 6 4.304 0
    $ T_{2} $ 0.069 3 0.069 4 0.069 6
    $ T_{3} $ 0.049 2 0.038 0 0.036 6
    K 0.988 7 1.018 8 0.994 1
    $\beta $ 9.053 5 9.884 3 9.228 0
    $ \delta_{r} $ −0.000 1 0.024 3 0.012 0
    下载: 导出CSV

    表  7  基于实船试验数据的辨识建模预报误差

    Table  7.   Prediction error of identification modeling based on actual ship experimental data

    名称RMSE
    $ \psi $r
    原始模型+LSSVM79.472 31.105 9
    模型重构+LSSVM52.081 51.035 2
    模型重构+变异APSO-WLSSVM13.734 20.870 4
    下载: 导出CSV
  • [1] 郑华荣, 魏艳, 瞿逢重. 水面无人艇研究现状[J]. 中国造船, 2020, 61(z1): 228-240.

    Zheng Huarong, Wei Yan, Qu Fengzhong. Review on recent developments of unmanned marine surface vessels[J]. Shipbuilding of China, 2020, 61(z1): 228-240.
    [2] 田延飞. 实船试验操纵运动建模与参数辨识研究[D]. 武汉: 武汉理工大学, 2018.
    [3] 赵百岗, 张显库, 李争, 等. 船舶运动辨识建模研究现状与展望[J]. 舰船科学技术, 2021, 43(23): 21-24. doi: 10.3404/j.issn.1672-7649.2021.12.004

    Zhao Baigang, Zhang Xianku, Li Zheng, et al. Research on ship motion identification modelling[J]. Ship Science and Technology, 2021, 43(23): 21-24. doi: 10.3404/j.issn.1672-7649.2021.12.004
    [4] 梅斌. 基于自航试验的船舶操纵运动灰箱辨识建模[D]. 大连: 大连海事大学, 2020.
    [5] 秦余钢, 马勇, 张亮, 等. 基于改进最小二乘算法的船舶操纵性参数辨识[J]. 吉林大学学报(工学版), 2016, 46(3): 897-903.

    Qin Yugang, Ma Yong, Zhang Liang, et al. Parameter identification of ship’s maneuvering motion based on improved least square method[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(3): 897-903.
    [6] 谢朔, 初秀民, 柳晨光, 等. 基于多新息最小二乘法的船舶操纵响应模型参数辨识[J]. 中国航海, 2017, 40(1): 73-78. doi: 10.3969/j.issn.1000-4653.2017.01.016

    Xie Shuo, Chu Xiumin, Liu Chenguang, et al. Parameter identification of ship maneuvering response model based on multi-innovation least squares algorithm[J]. Navigation of China, 2017, 40(1): 73-78. doi: 10.3969/j.issn.1000-4653.2017.01.016
    [7] 孙功武, 谢基榕, 王俊轩. 基于动态遗忘因子递推最小二乘算法的船舶航向模型辨识[J]. 计算机应用, 2018, 38(3): 900-904.

    Sun Gongwu, Xie Jirong, Wang Junxuan. Ship course identification model based on recursive least squares algorithm with dynamic forgetting factor[J]. Journal of Computer Applications, 2018, 38(3): 900-904.
    [8] Zhao B G, Zhang X K. An improved nonlinear innovation-based parameter identification algorithm for ship models[J]. The Journal of Navigation, 2021, 74(3): 549-557. doi: 10.1017/S0373463321000102
    [9] 包政凯, 朱齐丹, 刘永超. 满秩分解最小二乘法船舶航向模型辨识[J]. 智能系统学报, 2022, 17(1): 137-143.

    Bao Zhengkai, Zhu Qidan, Liu Yongchao. Ship heading model identification based on full rank decomposition least square method[J]. CAAI Transactions on Intelligent Systems, 2022, 17(1): 137-143.
    [10] 褚式新, 茅云生, 董早鹏, 等. 基于极大似然法的高速无人艇操纵响应模型参数辨识[J]. 兵工学报, 2020, 41(1): 127-134.

    Chu Shixin, Mao Yunsheng, Dong Zaopeng, et al. Parameter identification of high-speed USV maneuvering response model based on maximum likelihood algorithm[J]. Acta Armamentarii, 2020, 41(1): 127-134.
    [11] Chen H L, Li Q, Wang Z Y. Improved maximum likelihood method for ship parameter identification[C]//2018 37th Chinese Control Conference. Wuhan, China: IEEE, 2018: 1614-1621.
    [12] Xie S, Chu X M, Liu C G, et al. Parameter identification of ship motion model based on multi-innovation methods[J]. Journal of Marine Science and Technology, 2020, 25(1): 162-184. doi: 10.1007/s00773-019-00639-y
    [13] 秦操. 基于无迹卡尔曼滤波的船舶运动数学模型辨识[J]. 舰船科学技术, 2021, 43(1): 89-94.

    Qin Cao. Parameter identification for ship mathematical model based on unscented Kalman filter[J]. Ship Science and Technology, 2021, 43(1): 89-94.
    [14] Zheng J, Yan D W, Yan M, et al. An unscented kalman filter online identification approach for a nonlinear ship motion model using a self-navigation test[J]. Machines, 2022, 10(5): 312. doi: 10.3390/machines10050312
    [15] Wang S, Wang L J, Im N, et al. Real-time parameter identification of ship maneuvering response model based on nonlinear Gaussian filter[J]. Ocean Engineering, 2022, 247: 110471. doi: 10.1016/j.oceaneng.2021.110471
    [16] Jiang Y, Wang X G, Zou Z J, et al. Identification of coupled response models for ship steering and roll motion using support vector machines[J]. Applied Ocean Research, 2021, 110: 102607. doi: 10.1016/j.apor.2021.102607
    [17] Wang Z H, Zou Z J, Soares C G. Identification of ship manoeuvring motion based on nu-support vector machine[J]. Ocean Engineering, 2019, 183: 270-281. doi: 10.1016/j.oceaneng.2019.04.085
    [18] Xu H T, Soares C G. Hydrodynamic coefficient estimation for ship manoeuvring in shallow water using an optimal truncated LS-SVM[J]. Ocean Engineering, 2019, 191: 106488. doi: 10.1016/j.oceaneng.2019.106488
    [19] Xu H T, Hinostroza M A, Wang Z H, et al. Experimental investigation of shallow water effect on vessel steering model using system identification method[J]. Ocean Engineering, 2020, 199: 106940. doi: 10.1016/j.oceaneng.2020.106940
    [20] Zhu M, Hahn A, Wen Y Q, et al. Optimized support vector regression algorithm-based modeling of ship dynamics[J]. Applied Ocean Research, 2019, 90: 101842. doi: 10.1016/j.apor.2019.05.027
    [21] 谢朔, 初秀民, 柳晨光, 等. 基于改进 LSSVM 的船舶操纵运动模型在线参数辨识方法[J]. 中国造船, 2018, 59(2): 178-189. doi: 10.3969/j.issn.1000-4882.2018.02.019

    Xie Shuo, Chu Xiumin, Liu Chenguang, et al. Online parameter identification method for ship maneuvering models based on improved LSSVM[J]. Shipbuilding of China, 2018, 59(2): 178-189. doi: 10.3969/j.issn.1000-4882.2018.02.019
    [22] 孙玉山, 徐昊, 曹东东, 等. 果蝇算法在基于LSSVM智能水下机器人操纵运动模型辨识中的应用[J]. 船舶工程, 2017(2): 94-98.

    Sun Yushan, Xu hao, Cao Dongdong, et al. Application of fruit fly optimization algorithm in model identification of maneuverability motion of underwater vehicle based on LSSVM[J]. Ship Engineering, 2017(2): 94-98.
    [23] 周欣然, 滕召胜, 蒋星军. 基于无偏置项LSSVM的稳健在线过程建模方法[J]. 模式识别与人工智能, 2010, 23(6): 885-892.

    Zhou Xinran, Teng Zhaosheng, Jiang Xingjun. Robust online process modeling method based on non-bias LSSVM[J]. Pattern Recognition and Artificial Intelligence, 2010, 23(6): 885-892.
    [24] Luo W L, Soares C G, Zou Z J. Parameter identification of ship maneuvering model based on support vector machines and particle swarm optimization[J]. Journal of Offshore Mechanics & Arctic Engineering, 2016, 138(3): 031101.
    [25] Zhu M, Hahn A, Wen Y Q, et al. Identification-based simplified model of large container ships using support vector machines and artificial bee colony algorithm[J]. Applied Ocean Research, 2017, 68: 249-261. doi: 10.1016/j.apor.2017.09.006
    [26] Xu P F, Cheng C, Cheng H X, et al. Identification-based 3 DOF model of unmanned surface vehicle using support vector machines enhanced by cuckoo search algorithm[J]. Ocean Engineering, 2020, 197: 106898. doi: 10.1016/j.oceaneng.2019.106898
    [27] 周怡, 王俊雄. 自适应粒子群算法在AUV水动力参数辨识中的应用[J]. 舰船科学技术, 2021, 43(21): 90-95.

    Zhou Yi, Wang Junxiong. Application of adaptive particle swarm optimization algorithm in AUV hydrodynamic parameter identification[J]. Ship Science and Technology, 2021, 43(21): 90-95.
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  23
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-09
  • 修回日期:  2022-09-13
  • 录用日期:  2022-09-27
  • 网络出版日期:  2023-10-12

目录

    /

    返回文章
    返回
    服务号
    订阅号