Review on Anti-UUV Detection Sonar System
-
摘要: 无人水下航行器(UUV)可承担多种水下特种作战任务。近年来, 敌方UUV给我国港口和海岸关键设施造成严重威胁。反UUV探测声呐是实现对敌方UUV入侵预警, 保护港口、海岸安全的重要手段。文中简要分析了UUV的特征及其探测难点, 介绍了国外利用蛙人探测声呐系统、海岸监视声呐系统实现UUV探测的研究现状, 并总结了目前反UUV探测声呐系统的关键技术、主要问题和发展方向, 可以为行业内反UUV探测声呐系统的研究提供参考。Abstract: Unmanned undersea vehicles(UUV) can perform varieties of underwater special operation missions. In recent years, enemy UUVs have posed serious threats to the safety of key equipment in ports and coastal areas. Anti-UUV detection sonar is an important method for realizing early warning of enemy UUVs intrusion and protecting ports and coasts. This paper briefly analyzes the characteristics of UUV and their detection difficulties. The research status of several typical foreign UUV detection systems using diver detection sonar and coast surveillance sonar systems is introduced. This paper summarizes the key technologies, main problems, and development directions of anti-UUV detection sonar systems and provides a reference for the research of anti-UUV detection sonar systems within the industry.
-
Key words:
- unmanned undersea vehicle /
- detection sonar /
- diver
-
表 1 水下武器声源级对比
Table 1. Comparison of the sound source levels of underwater weapons
武器类型 声源级/dB 备注 蛙人 开式呼吸 161 全闭式呼吸 131 半闭式呼吸 108 潜艇 噪音型 155 航速4 kn 安静型 135 战舰 165 航速20 kn -
[1] Khawaja W, Semkin V, Ratyal N I, et al. Threats from and Countermeasures for Unmanned Aerial and Underwater Vehicles[J]. Sensors, 2022, 22(10): 3896. doi: 10.3390/s22103896 [2] Railey K E. Demonstration of Passive Acoustic Detection and Tracking of Unmanned Underwater Vehicles[D]. USA: Massachusetts Institute of Technology, 2018. [3] ONR. Department of the Navy(DoN) 15.2 Small Business Innovation Research(SBIR) Proposal Submission Instruc- tions[R]. USA: Office of Naval Research(ONR), 1982. [4] 李晓东, 胡光兰, 吴晓婧. 美国无人潜航器反制措施研究现状[J]. 数字海洋与水下攻防, 2020, 3(3): 198-203. doi: 10.19838/j.issn.2096-5753.2020.03.004Li Xiao-dong, Hu Guang-lan, Wu Xiao-jing. Status Quo of U. S. Counter-UUV Studies[J]. Digital Ocean and Underwater Warfare, 2020, 3(3): 198-203. doi: 10.19838/j.issn.2096-5753.2020.03.004 [5] 张洪岩. 水下小型UUV辐射噪声特征提取技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2019. [6] Holmes J D, Carey W M, Lynch J F. An Overview of Unmanned Underwater Vehicle Noise in the Low to Mid Frequencies Bands[C]//Proceedings of Meetings on Acoustics. USA: Acoustical Society of America, 2010. [7] Gebbie J, Siderius M, Allen J S. Aspect-dependent Radiated Noise Analysis of an Underway Autonomous Underwater Vehicle[J]. Journal of the Acoustical Society of America, 2012, 132(5): EL351-EL357. doi: 10.1121/1.4754419 [8] 孙玉臣, 王德石, 李宗吉, 等. 蛙人探测声呐系统发展综述[J]. 水下无人系统学报, 2021, 29(5): 509-523.Sun Yu-chen, Wang De-shi, Li Zong-ji, et al. Review of Diver Detection Sonar System[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 509-523. [9] Radford C A, Jeffs A G, Tindle C T, et al. Bubbled Waters: The Noise Generated by Underwater Breathing Apparatus[J]. Marine and Freshwater Behaviour and Physiology, 2005, 38(4): 259-267. doi: 10.1080/10236240500333908 [10] 高学强, 杨日杰. 潜艇辐射噪声声源级经验公式修正[J]. 声学与电子工程, 2007(3): 17-18, 21. [11] Urick R J. 水声原理[M]. 洪申, 译. 3 版. 哈尔滨: 哈尔滨船舶工程学院出版社, 1990. [12] 聂东虎, 乔钢, 朱知萌, 等. 水下蛙人主被动探测实验研究[J]. 声学技术, 2015, 34(4): 300-303. doi: 10.16300/j.cnki.1000-3630.2015.04.002Nie Dong-hu, Qiao Gang, Zhu Zhi-meng, et al. Experimental Research of Passive and Active Detection for Underwater Diver[J]. Technical Acoustics, 2015, 34(4): 300-303. doi: 10.16300/j.cnki.1000-3630.2015.04.002 [13] 王琦, 范军, 王斌. 闭式蛙人目标强度预报及试验[J]. 声学技术, 2022, 41(2): 173-179. doi: 10.16300/j.cnki.1000-3630.2022.02.004Wang Qi, Fan Jun, Wang Bin. Target Strength of Closed frogman: Measurements and Modeling[J]. Technical Acoustics, 2022, 41(2): 173-179. doi: 10.16300/j.cnki.1000-3630.2022.02.004 [14] 许钢灿, 倪东波, 郭建. 反蛙人声呐系统发展综述[J]. 中国安全防范技术与应用, 2018(5): 13-18. doi: 10.3969/j.issn.1672-1470.2018.05.003 [15] 黄颖淞, 葛辉良, 王付印, 等. 蛙人探测声呐系统发展综述[J]. 水下无人系统学报, 2020, 28(1): 1-9.Huang Yin-song, Ge Hui-liang, Wang Fu-yin, et al. Review on the Development of Diver Detection Sonar System[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 1-9. [16] Physical Security Enterprise & Analysis Group. Automated Tracking and Classification of UUVs Utilizing AN/WQX-2[EB/OL]. [2016-05-24]. https://www.acq.osd.mil/ncbdp/nm/pseag/Automated%20Tracking%20and%20Classification%20of%20UUVs%20Utilizing%20ANWQX-2.html. [17] DSIT. SeaShield Underwater Coastal Surveillance System[EB/OL].[2014-10-6]. https://www.naval-technology.com/products/seashield-underwater-coastal-surveillance-system/#dsit. [18] STILETTO Maritime Demonstration Program. CounterUnmanned Undersea Vehicle(C-UUV) Capability Demonstration[EB/OL].[2016-09-04]. https://govtribe.com/opportunity/federal-contract-opportunity/stilettomaritime-demonstration-program-counter-unmanned-undersea-vehicle-c-uuv-capability-demonstration-cd171. [19] 孙超, 刘雄厚. MIMO声呐: 概念与技术特点探讨[J]. 声学技术, 2012, 31(2): 117-124. doi: 10.3969/j.issn1000-3630.2012.02.002Sun Chao, Liu Xiong-hou. MIMO Sonar: Concept and Technical Characteristic Discuss[J]. Technical Acoustics, 2012, 31(2): 117-124. doi: 10.3969/j.issn1000-3630.2012.02.002 [20] The Hidden Threat Facing Military & Civilian Ports[EB/OL].[2009-08-24]. http://ccom-pr.com/wp-content/uploads/underwater-july-august-091.pdf. [21] Gross P, Andrew P. The Application of Sector Scanning Sonar and Multibeam Imaging Sonar for Underwater Security[C]//Oceans 2007. Vancouver, BC, Canada: IEEE, 2007: 1-7. [22] Meecham A, Acker T W. Underwater Threat Detection and Tracking Using Multiple Sensors and Advanced Proce- ssing[J]. The Journal of the Acoustical Society of America, 2016, 140(4): 3349-3349. [23] Felber F. Extended Intruder Detection to Counter Advanced Underwater Threats in Ports and Harbors[C]//2018 IEEE International Symposium on Technologies for Homeland Security(HST). Woburn, MA, USA: IEEE, 2018: 1-5. [24] Sutin A, Bunin B, Sedunov A, et al. Stevens Passive Acoustic System for Underwater Surveillance[C]//2010 International WaterSide Security Conference. Carrara, Italy: IEEE, 2010. [25] Fillinger L, De Theije P, Zampolli M, et al. Towards a Passive Acoustic Underwater System for Protecting Harbours against Intruders[C]//2010 International WaterSide Security Conference. Carrara, Italy: IEEE, 2010. [26] Sutin A, Salloum H, DeLorme M, et al. Stevens Passive Acoustic System for Surface and Underwater Threat Detection[C]//2013 IEEE International Conference on Technologies for Homeland Security(HST). Waltham, MA, USA: IEEE, 2013: 195-200. [27] Yang T C, Schindall J, Huang C F, et al. Clutter Reduction Using Doppler Sonar in a Harbor Environment[J]. The Journal of the Acoustical Society of America, 2012, 132(5): 3053-3067. doi: 10.1121/1.4756921 [28] 周胜增, 杜选民. 利用正弦调频信号的宽带速度敏感特性抑制混响[J]. 声学学报, 2022, 47(1): 16-26. doi: 10.15949/j.cnki.0371-0025.2022.01.00Zhong Sheng-Zeng, Du Xuan-Min. Reverberation Suppression by Utilizing Wideband Speed Sensitive Characteristic of Sinusoidal Frequency Modulation Signal[J]. Chinese Journal of Acoustics, 2022, 47(1): 16-26. doi: 10.15949/j.cnki.0371-0025.2022.01.00 [29] Nõmm M. Sonar Signal Design and Evaluation with Emphasis on Diver Detection[D]. Germany: Christian-Albrechts Universität Kiel, 2015. [30] 陈桥, 童宁宁, 丁珊珊, 等. 基于正负线性调频信号的压缩感知波形分离方法[J]. 弹箭与制导学报, 2019, 39(4): 37-40, 44. doi: 10.15892/j.cnki.djzdxb.2019.04.010Chen Qiao, Tong Ning-ning, Ding Shan-shan, et al. CS-based Waveform-separation Method Based on Positive and Negative Linear Frequency Modulation Signal[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(4): 37-40, 44. doi: 10.15892/j.cnki.djzdxb.2019.04.010 [31] 张杨梅. 水下小目标主动探测关键技术研究[D]. 西安: 西北工业大学, 2017. [32] 范威, 朱代柱, 张德泽, 等. 混合高斯模型和Radon变换用于声呐图像背景抑制[J]. 水下无人系统学报, 2018, 26(5): 492-497.Fan Wei, Zhu Dai-zhu, Zhang De-ze, et al. Mixed Gaussian Model and RADON Transformation are Used for Sound Image Background Suppression[J]. Journal of Unmanned Underwater Systems, 2018, 26(5): 492-497. [33] 徐琰锋, 潘谢帆, 刘本奇. 混响环境下基于频率-波数谱分析的水下慢速目标回波检测方法[J]. 兵工学报, 2020, 41(9): 1880-1886. doi: 10.3969/j.issn.1000-1093.2020.09.020Xu Yan-feng, Pan Xie-fan, Liu Ben-qi. Detection Method for Underwater Slow Moving Targets Based on Frequency-wavenumber Spectrum Analysis in Reverberation Environment[J]. Acta Armamentarii, 2020, 41(9): 1880-1886. doi: 10.3969/j.issn.1000-1093.2020.09.020 [34] 斯佳成, 邓红超. 基于声呐历程累积图像的弱回波目标检测方法[J]. 声学技术, 2022, 41(1): 144-148. doi: 10.16300/j.cnki.1000-3630.2022.01.021Si Jia-cheng, Deng Hong-chao. Detection of Weak Echo Targets Based on Sonar History Accumulative Image[J]. Technical Acoustics, 2022, 41(1): 144-148. doi: 10.16300/j.cnki.1000-3630.2022.01.021 [35] 郝程鹏, 施博, 闫晟, 等. 主动声呐混响抑制与目标检测技术[J]. 科技导报, 2017, 35(20): 102-108.Hao Cheng-peng, Shi Bo, Yan Sheng, et al. Reverberation Suppression and Target Detection for Active Sonar[J]. Science & Technology Review, 2017, 35(20): 102-108. [36] 杨益新, 韩一娜, 赵瑞琴, 等. 海洋声学目标探测技术研究现状和发展趋势[J]. 水下无人系统学报, 2018, 26(5): 369-387.Yang Yi-xin, Han Yi-na, Zhao Rui-qin, et al. The Current Status and Development Trend of the Detection Technology of Marine Acoustic Goals[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 369-387. [37] 王冠群, 张春华, 尹力, 等. 联合多站阵元域数据的水下目标检测与跟踪[J]. 声学学报, 2019, 44(4): 491-502. doi: 10.15949/j.cnki.0371-0025.2019.04.010Wang Guan-qun, Zhang Chun-hua, Yin Li, et al. Underwater Target Detection and Tracking Based on Array Element Domain Data from Multi-arrays[J]. Acta Acustica, 2019, 44(4): 491-502. doi: 10.15949/j.cnki.0371-0025.2019.04.010 [38] 王剑书. 高分辨波达方向估计与宽带波束形成研究[D]. 西安: 西北工业大学, 2019 . [39] 黄海宁, 李宇. 水声目标探测技术研究现状与展望[J]. 中国科学院院刊, 2019, 34(3): 264-271. doi: 10.16418/j.issn.1000-3045.2019.03.003Huang Hai-ning, Li Yu. Current Situation and Prospect of Underwater Acoustic Target Detection Technology[J]. Journal of the Chinese Academy of Sciences, 2019, 34(3): 264-271. doi: 10.16418/j.issn.1000-3045.2019.03.003 [40] 李晖宙, 刘正红, 毛盾. 基于蛙人探测声呐序列图像的水下小目标跟踪算法[J]. 舰船电子工程, 2018, 38(2): 26-30, 34.Li Hui-zhou, Liu Zheng-hong, Mao Dun. Underwater Small Target Tracking Algorithm Based on Diver Detection Sonar Image Sequences[J]. Ship Electronic Engineering, 2018, 38(2): 26-30, 34. [41] Jahan K, Rao S K. Implementation of Underwater Target Tracking Techniques for Gaussian and Non-Gaussian Environments[J]. Computers & Electrical Engineering, 2020, 87: 106783. [42] Liu B, Tang X, Tharmarasa R, et al. Underwater Target Tracking in Uncertain Multipath Ocean Environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4899-4915. doi: 10.1109/TAES.2020.3003703 [43] 刘妹琴, 韩学艳, 张森林, 等. 基于水下传感器网络的目标跟踪技术研究现状与展望[J]. 自动化学报, 2021, 47(2): 235-251. doi: 10.16383/j.aas.c190886Liu Mei-qin, Han Xue-yan, Zhang Sen-lin, et al. The Current Status and Outlook of Target Tracking Technology Based on Underwater Sensor Network[J]. Automatic Chemistry Journal, 2021, 47(2): 235-251. doi: 10.16383/j.aas.c190886 [44] 张思宇, 何心怡, 张驰, 等. 水下多目标跟踪技术现状与展望[J]. 水下无人系统学报, 2018, 26(6): 511-520.Zhang Si-yu, He Xin-yi, Zhang Chi, et al. Multi-target Tracking Technical Status and Outlook for Underwater[J]. Journal of Unmanned Undersea Systems, 2018, 26(6): 511-520. [45] 李羿萱, 杜选民, 周胜增, 等. 多目标干扰环境中威胁目标自动跟踪方法[J]. 舰船科学技术, 2021, 43(3): 172-175. doi: 10.3404/j.issn.1672-7649.2021.02.035Li Yi-xuan, Du Xuan-min, Zhou Sheng-zheng, et al. Multi-target Interference in the Environment of Threat Target Automatic Tracking Method[J]. Ship Science and Technology, 2021, 43(3): 172-175. doi: 10.3404/j.issn.1672-7649.2021.02.035 [46] 郭戈, 王兴凯, 徐慧朴. 基于声呐图像的水下目标检测、识别与跟踪研究综述[J]. 控制与决策, 2018, 33(5): 906-922. doi: 10.13195/j.kzyjc.2017.1678Guo Ge, Wang Xing-kai, Xu Hui-mu. Review on Underwater Target Detection, Recognition and Tracking Based on Sonar Image[J]. Control and Decision, 2018, 33(5): 906-922. doi: 10.13195/j.kzyjc.2017.1678 [47] 方世良, 杜栓平, 罗昕炜, 等. 水声目标特征分析与识别技术[J]. 中国科学院院刊, 2019, 34(3): 297-305. doi: 10.16418/j.issn.1000-3045.2019.03.007Fang Shi-liang, Du Shuan-ping, Luo Xin-wei, et al. Analysis and Identification Technology of Water Sound Target Features[J]. College of Chinese Academy of Sciences, 2019, 34(3): 297-305. doi: 10.16418/j.issn.1000-3045.2019.03.007