• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于无偏伪线性卡尔曼滤波的3D到达角目标跟踪

赵唯 黄子豪 郝程鹏

赵唯, 黄子豪, 郝程鹏. 基于无偏伪线性卡尔曼滤波的3D到达角目标跟踪[J]. 水下无人系统学报, 2023, 31(5): 669-678 doi: 10.11993/j.issn.2096-3920.2022-0007
引用本文: 赵唯, 黄子豪, 郝程鹏. 基于无偏伪线性卡尔曼滤波的3D到达角目标跟踪[J]. 水下无人系统学报, 2023, 31(5): 669-678 doi: 10.11993/j.issn.2096-3920.2022-0007
ZHAO Wei, HUANG Zihao, HAO Chengpeng. 3D Angle of Arrival Target Tracking with Unbiased Pseudo-Linear Kalman Filter[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 669-678. doi: 10.11993/j.issn.2096-3920.2022-0007
Citation: ZHAO Wei, HUANG Zihao, HAO Chengpeng. 3D Angle of Arrival Target Tracking with Unbiased Pseudo-Linear Kalman Filter[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 669-678. doi: 10.11993/j.issn.2096-3920.2022-0007

基于无偏伪线性卡尔曼滤波的3D到达角目标跟踪

doi: 10.11993/j.issn.2096-3920.2022-0007
基金项目: 国家自然科学基金项目资助(61971412)
详细信息
    作者简介:

    赵唯:赵 唯(1998-), 女, 在读博士, 主要研究方向为目标跟踪及水下无线传感器网络

  • 中图分类号: TJ630.1; U666.7

3D Angle of Arrival Target Tracking with Unbiased Pseudo-Linear Kalman Filter

  • 摘要: 在3D到达角目标跟踪研究中, 伪线性卡尔曼滤波(PLKF)因计算复杂度低且对初始误差不敏感受到较大关注, 但观测矩阵与噪声之间的相关性会使PLKF的目标状态估计存在一定偏差。针对这一问题并考虑观测站存在定位误差的实际情况, 文中提出一种3D修正无偏PLKF算法。首先对方位角及俯仰角观测方程进行整体伪线性化, 通过修正噪声协方差矩阵来降低观测站定位误差对跟踪精度的影响; 其次通过分离观测矩阵中的噪声, 降低由观测矩阵和观测噪声相关性引起的估计偏差。仿真分析结果表明, 所提算法有效提高了3D到达角目标跟踪在非机动和机动2种场景下的精度, 且具有较低的计算复杂度。

     

  • 图  1  匀速目标跟踪的几何模型

    Figure  1.  Geometric model of constant-velocity target tracking

    图  2  匀速目标跟踪中不同算法RMSE曲线

    Figure  2.  RMSE curves of different algorithms in constant-velocity target tracking

    图  3  匀速目标跟踪中不同算法时均RMSE曲线

    Figure  3.  Time-averaged RMSE curves of different algorithms in constant-velocity target tracking

    图  4  机动目标跟踪几何模型

    Figure  4.  The geometric model for maneuvering target track

    图  5  机动目标跟踪中不同算法时均RMSE曲线(${{\boldsymbol{k_r}}} = {\bf{200}}\% $, $\;{\boldsymbol{\rho}} = {\bf{4}} $)

    Figure  5.  Time-averaged RMSE curves of different algorithms in maneuvering target tracking (${{\boldsymbol{k_r}}} = {\bf{200}}\% $, $\;{\boldsymbol{\rho}} = {\bf{4}} $)

    图  6  机动目标跟踪中不同算法时均RMSE曲线($\;{\boldsymbol{\rho}} = {\bf{4}} $, ${{\boldsymbol{\sigma _s}}} = {\bf{2}}^\circ $)

    Figure  6.  Time-averaged RMSE curves of different algorith- ms in maneuvering target tracking ($\;{\boldsymbol{\rho}} = {\bf{4}} $, ${{\boldsymbol{\sigma _s}}} = {\bf{2}}^\circ $)

    图  7  机动目标跟踪不同算法时均RMSE曲线(${\boldsymbol{\sigma _s}} = 2^\circ $${\boldsymbol{k_r}} = $$ {\bf{200}}\% $)

    Figure  7.  Time-averaged RMSE curves of different algorithms in maneuvering target tracking (${\boldsymbol{\sigma _s}} = 2^\circ $, ${\boldsymbol{k_r}} = $$ {\bf{200}}\% $)

    表  1  不同矩阵运算对应的浮点操作次数

    Table  1.   Number of flops corresponding to different matrix operations

    矩阵运算 浮点
    ${\boldsymbol{A}} \pm {\boldsymbol{A}}$ nm
    ${\boldsymbol{AB}}$ 2nml-nl
    ${{\boldsymbol{C}}^{ - 1}}$ n3
    下载: 导出CSV

    表  2  4种算法计算复杂度

    Table  2.   Computational complexity of four algorithms

    滤波步骤3D-PLKF3D-BCKF3D-IVKF3D-MUBKF
    预测${{\boldsymbol{\hat x}}_{k|k - 1}}$2nx2nx2nx2nx2nx2nx2nx2nx
    预测${{\boldsymbol{\hat P}}_{k|k - 1}}$4nx3nx24nx3nx24nx3nx24nx3nx2
    伪线性化5mznx+5mz5mznx+5mz5mznx+5mz12mznx+25mz−1
    ${{\boldsymbol{K}}_k}$6nx2mz+2nxmz2−3mznx+mz36nx2mz+2nxmz2
    3mznx+mz3
    12nx2mz+4nxmz2+
    10mznx+2mz3
    6nx2mz+2nxmz2
    3mznx+mz3
    估计${{\boldsymbol{\hat x}}_{k|k}}$4mznx9mznx+2nx2nx13mznx+2nx2nx4mznx
    估计${{\boldsymbol{\hat P}}_{k|k}}$2nx2mz+2nx22nx2mz+2nx24nx2mz+4nx22nx2mz+2nx2
    总复杂度4nx3+3nx2+8nx2mz+
    2nxmz2+6mznxnx+
    5mz+mz3
    4nx3+5nx2+8nx2mz+
    2nxmz2+11mznx−2nx+
    5mz+mz3
    4nx3+7nx2+16nx2mz+
    4nxmz2+28mznx−2nx+
    5mz+2mz3
    4nx3+3nx2+8nx2mz+
    2nxmz2+13mznxnx+
    25mz+mz3−1
    下载: 导出CSV
  • [1] 郑艺, 王明洲. 一种滑动后向递推的 EKF 纯方位目标跟踪方法[J]. 水下无人系统学报, 2020, 28(6): 663-669.

    Zheng Yi, Wang Mingzhou. Sliding backward recursive ekf bearings-only target tracking method[J]. Journal of Unmanned Undersea Systems, 2020, 28(6): 663-669.
    [2] 苏骏, 李亚安, 陈晓, 等. 双观测站水下纯方位多目标跟踪的数据关联算法[J]. 水下无人系统学报, 2018, 26(2): 115-121.

    Su Jun, Li Yaan, Chen Xiao, et al. Data association algorithm for multi-target tracking of underwater bearings-only systems with double observation stations[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 115-121.
    [3] Xu S, Doğançay K, Hmam H. Distributed pseudolinear estimation and UAV path optimization for 3D AOA target tracking[J]. Signal Processing, 2017, 133: 64-78. doi: 10.1016/j.sigpro.2016.10.012
    [4] Hou X, Zhou J, Yang Y, et al. Adaptive two-step bearing-only underwater uncooperative target tracking with uncertain underwater disturbances[J]. Entropy, 2021, 23(7): 907. doi: 10.3390/e23070907
    [5] 赵振轶, 李亚安, 陈晓, 等. 基于双观测站的水下机动目标被动跟踪[J]. 水下无人系统学报, 2018, 26(1): 40-45.

    Zhao Zhenyi, Li Yaan, Chen Xiao, et al. Passive tracking of underwater maneuvering target based on double observation station[J]. Journal of Unmanned Undersea Systems, 2018, 26(1): 40-45.
    [6] Luo J, Han Y, Fan L. Underwater acoustic target tracking: A review[J]. Sensors, 2018, 18(1): 112.
    [7] Badriasl L, Dogancay K. Three-dimensional target motion analysis using azimuth/elevation angles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 3178-3194. doi: 10.1109/TAES.2014.120251
    [8] Aidala V J. Kalman filter behavior in bearings-only tracking applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 1979, 15(1): 29-39. doi: 10.1109/TAES.1979.308793
    [9] Lin X D, Kirubarajan T, Bar-Shalom Y, et al. Comparison of EKF, pseudomeasurement, and particle filters for a bearing-only target tracking problem[C]//Proceedings of Spie the International Society for Optical Engineering 2007. Orlando, America: SPIE, 2002: 240-250.
    [10] Nguyen N H, Doğançay K. Improved pseudolinear Kalman filter algorithms for bearings-only target tracking[J]. IEEE Transactions on Signal Processing, 2017, 65(23): 6119-6134. doi: 10.1109/TSP.2017.2749207
    [11] Huang Z H, Chen S J, Hao C P, et al. Bearings-only target tracking with an unbiased pseudolinear Kalman filter[J]. Remoto Sensing, 2021, 13(15): 1-19.
    [12] Nguyen N H, Doğançay K. Instrumental variable based Kalman filter algorithm for three-dimensional AOA target tracking[J]. IEEE Signal Processing Letters, 2018, 25(10): 1605-1609. doi: 10.1109/LSP.2018.2869108
    [13] Wang Y, Ho K C. An asymptotically efficient estimator in closed-form for 3-D AOA localization using a sensor network[J]. IEEE Transactions on Wireless Communications, 2015, 14(12): 6524-6535. doi: 10.1109/TWC.2015.2456057
    [14] Yang L, Ho K C. Alleviating sensor position error in source localization using calibration emitters at inaccurate locations[J]. IEEE Transactions on Signal Processing, 2010, 58(1): 67-83. doi: 10.1109/TSP.2009.2028947
    [15] Ma Z H, Ho K C. A study on the effects of sensor position error and the placement of calibration emitter for source localization[J]. IEEE Transactions on Wireless Communications, 2014, 13(10): 5440-5452. doi: 10.1109/TWC.2014.2341609
    [16] Ho K C, Yang L. On the use of a calibration emitter for source localization in the presence of sensor position uncertainty[J]. IEEE Transactions on Signal Processing, 2008, 56(12): 5758-5772. doi: 10.1109/TSP.2008.929870
    [17] Farina A. Target tracking with bearings-only measurements[J]. Signal Process, 1999, 78(1): 61-78. doi: 10.1016/S0165-1684(99)00047-X
    [18] Stoica P, Nehorai A. MUSIC, maximum likelihood and Cramer-Rao bound[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(5): 720-741. doi: 10.1109/29.17564
    [19] Pang F F, Doğançay K, Nguyen N H, et al. AOA pseudolinear target motion analysis in the presence of sensor location errors[J]. IEEE Transactions on Signal Processing, 2020, 68: 3385-3399. doi: 10.1109/TSP.2020.2998896
    [20] Dogancay K. Bias compensation for the bearings-only pseudolinear target track estimator[J]. IEEE Transactions on Signal Processing, 2005, 54(1): 59-68.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  50
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-07
  • 修回日期:  2022-08-17
  • 录用日期:  2022-09-26
  • 网络出版日期:  2023-09-25

目录

    /

    返回文章
    返回
    服务号
    订阅号