Subsea Broadband Reverberation Modeling and Simulation of High-speed Motion Sonar
-
摘要: 海底混响是鱼雷在声速近似满足负梯度分布的浅海水域进行目标探测时的主要干扰源。为了准确、便捷、可复现地获得混响信号, 并研究其统计特性, 文中提出一种基于Bellhop模型的高速运动声呐海底宽带混响仿真方法。该方法先将对混响有贡献的海底区域划分为若干个不均匀的散射单元, 计算每个单元的散射特征函数, 其中传播损失通过Bellhop模型计算; 再基于网络模型仿真得到包含幅值、相位与多普勒频移等主要影响因子的海底混响模拟信号。最后, 对仿真信号与实航信号进行时频域分析及相似性比较。结果表明, 以仿真信号与实测数据瞬时值的概率密度分布的点积比为评价标准, 文中的方法与实航数据相似度明显提高, 验证了模型的有效性。Abstract: Subsea reverberation is the main source of interference when torpedoes detect targets in shallow waters where the sound velocity approximately satisfies the negative gradient distribution. In order to obtain the reverberation signal accurately, conveniently and reproducibly, and study its statistical characteristics, this paper proposes a high-speed motion sonar subsea broadband reverberation simulation method based on the Bellhop model. In this method, the seabed area that contributes to the reverberation is divided into several non-uniform scattering units, and the scattering characteristic function of each unit is calculated. The propagation loss is calculated by the Bellhop model. Subsea reverberation analog signal with main influencing factors such as doppler shift. Finally, the time-frequency domain analysis and similarity comparison between the simulated signal and the actual flight signal are carried out. The results show that using the dot product ratio of the probability density distribution of the instantaneous value of the simulated signal and the measured data as the evaluation standard, the similarity between the method in this paper and the actual flight data is greatly improved, which verifies the validity of the model.
-
Key words:
- torpedo /
- subsea reverberation /
- motion platform /
- Bellhop model /
- element scattering model
-
表 1 不同方法仿真信号与实测信号PDF点积比
Table 1. Dot product ratio of simulation signals and measured signals for different methods
方法 仿真与实测信号PDF点积比 CW信号 LFM信号 改进前 0.23 0.27 改进后 0.84 0.93 -
[1] 尤立克. R J. 水声原理[M]. 洪申, 译. 哈尔滨: 哈尔滨船舶工程学院出版社, 1990: 190-220. [2] 詹昊可, 蔡志明, 苑秉成. 浅海混响扩展的空时2D分布与混响抑制[J]. 鱼雷技术, 2009, 17(2): 29-32.Zhan Haoke, Cai Zhiming, Yuan Bingcheng. Spatial-temporal 2D distribution of reverberation expansion in shallow sea and reverberation suppression[J]. Torpedo Technology, 2009, 17(2): 29-32. [3] 张驰. 浅海主动声纳混响统计模型研究[D]. 北京: 中国科学院大学, 2017. [4] Isakson M J, Chotiros N P. Finite element modeling of reverberation and transmission loss in shallow water waveguides with rough boundaries[J]. The Journal of the Acoustical Society of America, 2011, 129(3): 1273-1279. doi: 10.1121/1.3531810 [5] 韩荣荣. 基于混响场空间特性的抗混响方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2014. [6] Douglas A A, Senior M, Lyons A P. Simulation of Non-Rayleigh reverberation and clutter[J]. IEEE Journal of Oceanic Engineering, 2004, 29(2): 347-362. doi: 10.1109/JOE.2004.828202 [7] 吕维, 王志杰, 李建辰, 等. 一种改进的混响精细结构模型及其特性分析[J]. 舰船科学技术, 2012, 34(2): 17-21.Lü Wei, Wang Zhijie, Li Jianchen, et al. An improved reverberation fine structure model and its characteristic analysis[J]. Ship Science and Technology, 2012, 34(2): 17-21. [8] 黄晓燕, 冯西安, 高天德. 任意形状海底的混响谱模型及仿真[J]. 系统仿真学报, 2014, 26(11): 2576-2580. doi: 10.16182/j.cnki.joss.2014.11.007Huang Xiaoyan, Feng Xian, Gao Tiande. Reverberation spectrum model and simulation of seabed with arbitrary shape[J]. Journal of System Simulation, 2014, 26(11): 2576-2580. doi: 10.16182/j.cnki.joss.2014.11.007 [9] 蔡平, 梁国龙, 葛凤翔, 等. 界面混响信号的仿真研究[J]. 哈尔滨工程大学学报, 2000, 21(4): 31-35.Cai Ping, Liang Guolong, Ge Fengxiang, et al. Simulation study of interface reverberation signal[J]. Journal Of Harbin Engineering University, 2000, 21(4): 31-35. [10] 赵烨, 冯西安, 郑玉峰, 等. 海底混响的空时模型及仿真[J]. 计算机仿真, 2011, 28(12): 398-401. doi: 10.3969/j.issn.1006-9348.2011.12.097Zhao Ye, Feng Xian, Zheng Yufeng, et al. Space-time model and simulation of seabed reverberation[J]. Computer Simulation, 2011, 28(12): 398-401. doi: 10.3969/j.issn.1006-9348.2011.12.097 [11] 孙文俊. 主动声呐混响模型与抗混响信号处理[D]. 西安: 西北工业大学, 2006. [12] 房媛媛, 李亚安, 崔琳. 基于运动平台的海底混响建模与仿真[J]. 声学技术, 2013(6): 473-476.Fang Yuanyuan, Li Yaan, Cui Lin. Modeling and simulation of seabed reverberation based on motion platform[J]. Acoustics Technology, 2013(6): 473-476. [13] 黄晓燕, 冯西安, 高天德. 主动声呐海面混响散射模型及仿真[J]. 计算机仿真, 2014, 31(7): 161-164. doi: 10.3969/j.issn.1006-9348.2014.07.037Huang Xiaoyan, Feng Xian, Gao Tiande. Active sonar sea surface reverberation scattering model and simulation[J]. Computer Simulation, 2014, 31(7): 161-164. doi: 10.3969/j.issn.1006-9348.2014.07.037 [14] 赵栋良, 梁红, 杨长生, 等. 任意阵型下分层海底空时混响建模与仿真[J]. 鱼雷技术, 2015, 23(6): 414-419.Zhao Dongliang, Liang Hong, Yang Changsheng, et al. Modeling and simulation of layered seabed space-time reverberation under arbitrary formation[J]. Torpedo Technology, 2015, 23(6): 414-419. [15] 支绍龙. 射线跟踪模型在吊放声纳性能预报中的应用研究[J]. 声学技术, 2013(S1): 123-124.Zhi Shaolong. Research on the application of ray tracing model in performance prediction of hoisting sonar[J]. Acoustics Technology, 2013(S1): 123-124. -