Research on Flexible Triboelectric Nanogenerator for Underwater Energy Harvesting
-
摘要: 由大量无线传感器节点组成的海洋分布式传感器网络对于海洋开发和保护至关重要,这些传感器以蓄电池供电为主, 难以长时间工作, 因此需研发海洋环境能量收集装置来提高分布式传感器的续航能力。文中基于摩擦纳米发电原理,提出了一种由柔性高分子薄膜以及导电油墨构成的柔性摩擦纳米发电机, 在波浪或洋流的作用下, 柔性摩擦纳米发电机产生振动, 实现机械能—电能能量转换。在建立柔性摩擦纳米发电机动力学和发电模型的基础上, 创新性地探究其分别在波浪和海流作用下的运动模态和发电性能。研究结果表明, 柔性摩擦纳米发电机的输出性能在一定范围内随着振幅、频率、流速的增加而增大, 同时并联功率随个数的增加而增大。文中提出的基于柔性摩擦纳米发电机的水下能量收集技术为实现海洋分布式传感器自供能提供了新的思路。
-
关键词:
- 海洋分布式传感器网络 /
- 柔性摩擦纳米发电机 /
- 水下能量收集
Abstract: The marine distributed sensor network is composed of numerous wireless sensor nodes, which are crucial for ocean development and protection. These sensors are highly dependent on batteries and difficult to operate for long working times. Therefore, developing marine energy-harvesting devices is necessary for achieving in situ self-powered sensors. According to the principle of the triboelectric effect, this study proposed a flexible triboelectric nanogenerator(F-TENG) composed of flexible polymer films, which vibrates under waves and ocean currents and converts mechanical energy to electrical energy. This study established the working model of F-TENG and further explored its vibration mode and output performance. The results showed that the output performance of the F-TENG increased with the increasing amplitude, frequency, and flow rate within a certain range, and the parallel power increased with the increasing unit. This provides a new concept for realizing self-powered of marine distributed sensors. -
表 1 F-TENG振动特性实验参数列表
Table 1. Parameters in vibration experiment of F-TENG
名称 符号 备注 斯特劳哈尔数 $ {S_t} $ — 振动频率/Hz f — F-TENG长度/m l — F-TENG宽度/m w — 流速/(m·s−1) U — 圆柱钝体横截面直径/m D — 圆柱钝体与F-TENG的距离 L 无量纲化, 用D表示 -
[1] Xu G, Shi Y, Sun X, et al. Internet of Things in Marine Environment Monitoring: A Review[J]. Sensors (Basel), 2019, 19(7): 1711-1732. [2] 李红志, 闫晨阳, 贾文娟. 海洋温盐深传感器技术自主创新与产业发展的几点思考[J]. 水下无人系统学报, 2021, 29(3): 249-256.Li Hong-zhi, Yan Chen-yang, Jia Wen-juan. Some Thoughts on Independent Innovation and Industrial Development of Ocean CTD Sensor Technology[J]. Journal of Unmanned Undersea Systems, 2021, 29(3): 249-256. [3] Howe B M, Chao Y, Arabshahi P, et al. A Smart Sensor Web for Ocean Observation: Fixed and Mobile Platforms, Integrated Acoustics, Satellites and Predictive Modeling[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(4): 507-521. doi: 10.1109/JSTARS.2010.2052022 [4] Falnes J. A Review of Wave-energy Extraction[J]. Marine Structures, 2007, 20(4): 185-201. doi: 10.1016/j.marstruc.2007.09.001 [5] Kofoed J P, Frigaard P, Friis-Madsen E, et al. Prototype Testing of the Wave Energy Converter Wave Dragon[J]. Renewable Energy, 2006, 31(2): 181-189. doi: 10.1016/j.renene.2005.09.005 [6] Allen J J, Smits A J. Energy Harvesting EEL[J]. Journal of Fluids and Structures, 2001, 15: 629-640. doi: 10.1006/jfls.2000.0355 [7] Khan U, Kim S W. Triboelectric Nanogenerators for Blue Energy Harvesting[J]. ACS Nano, 2016, 10(7): 6429-32. doi: 10.1021/acsnano.6b04213 [8] Xu M, Wang P, Wang Y-C, et al. A Soft and Robust Spring Based Triboelectric Nanogenerator for Harvesting Arbitrary Directional Vibration Energy and Self-Powered Vibration Sensing[J]. Advanced Energy Materials, 2018, 8(9): 1702432. doi: 10.1002/aenm.201702432 [9] Wang X, Wen Z, Guo H, et al. Fully Packaged Blue Energy Harvester by Hybridizing a Rolling Triboelectric Nanogenerator and an Electromagnetic Generator[J]. ACS Nano, 2016, 10(12): 11369-11376. doi: 10.1021/acsnano.6b06622 [10] Wang Z L. Triboelectric Nanogenerators as New Energy Technology and Self-powered Sensors-principles, Problems and Perspectives[J]. Faraday Discuss, 2014, 176: 447-58. doi: 10.1039/C4FD00159A [11] 杨恩, 王岩, 王建业, 等. 基于薄膜拍打型摩擦纳米发电机的风能收集研究[J]. 中国科学: 技术科学, 2021, 51(6): 684-698. doi: 10.1360/SST-2020-0391Yang En, Wang Yan, Wang Jian-ye, et al. Research on a Film-Flapping Triboelectric Nanogenerator for Wind Energy Harvesting[J]. Scientia Sinica Technologica, 2021, 51(6): 684-698. doi: 10.1360/SST-2020-0391 [12] Xu M, Zhao T, Wang C, et al. High Power Density Tower-like Triboelectric Nanogenerator for Harvesting Arbitrary Directional Water Wave Energy[J]. ACS Nano, 2019, 13(2): 1932-1939. [13] Kim D Y, Kim H S, Kong D S, et al. Floating Buoy-based Triboelectric Nanogenerator for an Effective Vbrational Energy Harvesting from Irregular and Random Water Waves in Wild sea[J]. Nano Energy, 2018, 45: 247-254. doi: 10.1016/j.nanoen.2017.12.052 [14] Xi Y, Guo H, Zi Y, et al. Multifunctional TENG for Blue Energy Scavenging and Self-Powered Wind-Speed Sensor[J]. Advanced Energy Materials, 2017, 7(12): 1602397. doi: 10.1002/aenm.201602397 [15] Xu L, Jiang T, Lin P, et al. Coupled Triboelectric Nanogenerator Networks for Efficient Water Wave Energy Harvesting[J]. ACS Nano, 2018, 12(2): 1849-1858. doi: 10.1021/acsnano.7b08674