• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于UNDERWATER-CUT模型的水下图像增强算法

姚鹏 刘玉会

姚鹏, 刘玉会. 基于UNDERWATER-CUT模型的水下图像增强算法[J]. 水下无人系统学报, 2022, 30(5): 605-611 doi: 10.11993/j.issn.2096-3920.202111004
引用本文: 姚鹏, 刘玉会. 基于UNDERWATER-CUT模型的水下图像增强算法[J]. 水下无人系统学报, 2022, 30(5): 605-611 doi: 10.11993/j.issn.2096-3920.202111004
YAO Peng, LIU Yu-hui. Underwater Image Enhancement Based on UNDERWATER-CUT Model[J]. Journal of Unmanned Undersea Systems, 2022, 30(5): 605-611. doi: 10.11993/j.issn.2096-3920.202111004
Citation: YAO Peng, LIU Yu-hui. Underwater Image Enhancement Based on UNDERWATER-CUT Model[J]. Journal of Unmanned Undersea Systems, 2022, 30(5): 605-611. doi: 10.11993/j.issn.2096-3920.202111004

基于UNDERWATER-CUT模型的水下图像增强算法

doi: 10.11993/j.issn.2096-3920.202111004
基金项目: 国家自然科学基金项目资助(51909252).
详细信息
    作者简介:

    姚鹏:姚 鹏(1989-), 男, 博士, 副教授, 主要研究方向为无人系统智能规划与自主控制

  • 中图分类号: U675.81; TJ630

Underwater Image Enhancement Based on UNDERWATER-CUT Model

  • 摘要: 针对水下图像的颜色失真和对比度失衡问题, 提出了一种基于UNDERWATER-CUT模型的弱监督水下图像增强算法。该算法网络训练时无需成对训练集, 通过图像分块的方式构建对比学习正负样本, 约束了图像生成的内容。使用了结构相似性损失函数对水下图像增强进行约束, 确保CUT模型在对水下图像域到脱水图像域进行转换过程中的物体结构不变。同时还使用alignment和uniformity 2个简单函数的线性组合来近似逼近CUT模型的InfoNCE损失函数, 使得改进后的模型训练更容易收敛到最优值。实验结果证明经过文中算法增强后的图像, 颜色失真得到极大的修正, 图像中的物体结构和修复前的图像基本一致。

     

  • 图  1  UNDERWATER-CUT模型网络结构

    Figure  1.  Network structure of UNDERWTAER-CUT model

    图  2  生成器模型网络结构

    Figure  2.  Network structure of generator model

    图  3  判别器模型网络结构

    Figure  3.  Network structure of discriminator model

    图  4  不同方法在相同数据集下的增强效果

    Figure  4.  Enhanced results of different methods in the same dataset

    表  1  各方法增强后图像指标对比

    Table  1.   Comparison of the image indicators enhanced by each method

    模型FIDUCIQEPSNR
    CycleGAN129.630.551 914.99
    SSIM-CycleGAN107.770.557 814.85
    CUT182.380.551 613.48
    SSIM-CUT113.660.625 218.62
    UNDERWATER-CUT104.530.634 218.18
    下载: 导出CSV
  • [1] 杨爱萍, 曲畅, 王建, 等. 基于水下成像模型的图像清晰化算法[J]. 电子与信息学报, 2018, 40(2): 298-305.

    Yang Ai-ping, Qu Chang, Wang Jian, et al. Underwater Image Visibility Restoration Based on Underwater Imaging Model[J]. Journal of Electronics & Information Technology, 2018, 40(2): 298-305.
    [2] He K, Sun J, Tang X. Single Image Haze Removal Using Dark Channel Prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(12): 2341-2353.
    [3] Wen H, Tian Y, Huang T, et al. Single Underwater Image Enhancement with a New Optical Model[C]//2013 IEEE International Symposium on Circuits and Systems(ISCAS). Beijing, China: IEEE, 2013: 753-756.
    [4] Li J, Skinner K A, Eustice R M, et al. WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images[J]. IEEE Robotics and Automation Letters, 2017, 3(1): 387-394.
    [5] Li C, Guo J, Guo C. Emerging from Water: Underwater Image Color Correction Based on Weakly Supervised Color Transfer[J]. IEEE Signal Processing Letters, Institute of Electrical and Electronics Engineers Inc., 2018, 25(3): 323-327.
    [6] Zhu J Y, Park T, Isola P, et al. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017.
    [7] Wang Z, Bovik A C, Sheikh H R, et al. Image Quality Assessment: from Error Visibility to Structural Similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861
    [8] 李庆忠, 白文秀, 牛炯. 基于改进CycleGAN的水下图像颜色校正与增强[J/OL]. 自动化学报, 2020, 46(x): 1-11.[2021-10-10]. http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c200510.

    Li Qing-Zhong, Bai Wen-Xiu, Niu Jiong. Underwater Image Color Correction and Enhancement Based on Improved Cycle-consistent Generative Adversarial Networks[J/OL]. Acta Automatica Sinica, 2020, 46(x): 1−11. [2021-10-10]. http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c200510.
    [9] Park T, Efros A A, Zhang R, et al. Contrastive Learning for Unpaired Image-to-Image Translation[EB/OL]. (2020-08-20)[2021-11-10]. https://arxiv.org/abs/2007.15651.
    [10] Van den Oord A, Li Y, Vinyals O. Representation Learning with Contrastive Predictive Coding[EB/OL]. (2019-01-22)[2021-11-10]. http://export.arxiv.org/abs/1807.03748.
    [11] Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Networks[EB/OL]. (2017-04-03)[2021-11-10]. https://doi.org/10.48550/arXiv.1701.00160.
    [12] He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, NV, USA: IEEE, 2016: 770-778.
    [13] Isola P, Zhu J-Y, Zhou T, et al. Image-to-Image Translation with Conditional Adversarial Networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2018.
    [14] Wang T, Isola P. Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere[EB/OL]. (2020-11-10)[2021-12-17]. https://doi.org/10.48550/arXiv.2005.10242.
    [15] Li C, Guo C, Ren W, et al. An Underwater Image Enhancement Benchmark Dataset and Beyond[J]. IEEE Transactions on Image Processing, 2020, 29: 4376-4389. doi: 10.1109/TIP.2019.2955241
    [16] Paszke A, Gross S, Massa F, et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library[EB/OL]. (2019-12-03)[2021-11-07]. https://doi.org/10.48550/arXiv.1912.01703.
    [17] Huynh-Thu Q, Ghanbari M. Scope of Validity of PSNR in Image/Video Quality Assessment[J]. Electronics Letters, IET, 2008, 44(13): 800-801. doi: 10.1049/el:20080522
    [18] Heusel M, Ramsauer H, Unterthiner T, et al. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium[EB/OL]. (2018-01-12)[2021-11-07]. https://doi.org/10.48550/arXiv.1706.08500.
    [19] Yang M, Sowmya A. An Underwater Color Image Quality Evaluation Metric[J]. IEEE Transactions on Image Processing, 2015, 24(12): 6062-6071. doi: 10.1109/TIP.2015.2491020
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  407
  • HTML全文浏览量:  191
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-16
  • 修回日期:  2022-01-21
  • 录用日期:  2022-08-12
  • 网络出版日期:  2022-09-05

目录

    /

    返回文章
    返回
    服务号
    订阅号