Simulation Analysis of Fuel Pump Piston Oil Film Friction Heat Generation Based on CFD Method
-
摘要: 对水下燃气涡轮机动力系统燃料泵柱塞油膜摩擦生热问题, 结合流体力学动网格和滑移网格方法, 根据柱塞运动方程进行用户自定义函数编程, 考虑油液的粘温特性建立燃料泵柱塞油膜仿真计算模型, 并给出了柱塞油膜摩擦生热建模分析方法。根据所提出分析方法对柱塞油膜摩擦生热进行了仿真分析, 研究了出口压力、壁面温度及转速等参数对油膜摩擦生热引起温度变化的影响规律。获得如下结论: 入口压力为0.5 MPa时, 出口压力的变化对油膜温度上升影响较小, 且油膜顶部位置温度上升量最大, 在转速为2 250 r/min工况下温度上升量可达4 K左右; 2) 在300~373 K范围内, 壁面温度每上升20 K, 油膜顶部温度上升量降低约50%, 且373 K时油膜顶部温度上升量仅为300 K时的9.2%; 3) 油膜温度上升量与转速近似呈线性关系。Abstract: Aiming at the friction heat generation of fuel pump piston oil films for underwater gas turbines, combined with the computational fluid dynamics dynamic grid and slip grid methods, user-defined function programming is performed according to the piston motion equation. Furthermore, a fuel-pump piston oil-film simulation calculation model is established considering the viscosity-temperature characteristics of the oil. A modeling analysis method for the frictional heat generation of the piston oil film is presented. Using the proposed analysis method, the frictional heat generation of the piston oil film was simulated and analyzed, and the influences of the outlet pressure, wall temperature, and rotational speed on the temperature change caused by the oil film frictional heat generation were studied. The following conclusions are obtained. 1) When the inlet pressure was 0.5 MPa, the changes in the outlet pressure had little effect on the temperature rise of the oil film. Moreover, the temperature rise at the top of the oil film was the largest, and the temperature rise could reach up to approximately 4 K at the rate of 2 250 r/min. 2) In the range of 300 K to 373 K, the temperature increase at the top of the oil film decreased by approximately 50% for every 20 K increase in wall temperature. Moreover, the temperature increase at the top of the oil film at 373 K was only 9.2% of that at 300 K. 3) The temperature increase of the oil film and the rotation speed have an approximately linear relationship.
-
表 1 网格验证结果
Table 1. The results of grid verification
网格单元数 时间步/s 顶部油膜温度/K 中部油膜温度/K 115121 0.000 050 3.55 0.94 115121 0.000 025 3.50 0.95 115121 0.000 010 3.51 0.95 237417 0.000 010 3.44 0.93 438044 0.000 010 3.45 0.94 850685 0.000 010 3.44 0.93 表 2 油液物性参数
Table 2. The physical parameters of oil
密度
/(kg/m3)比热容
/(J/(kg·K))导热系数
/(W/(m·K))动力黏度
/(kg/(m·s))880 1800 0.127 0.026 27(313 K);
0.004 43(373 K)表 3 油膜温升仿真边界条件
Table 3. The boundary conditions of the rise of temperature on oil film
变量 入口压力/MPa 出口压力/MPa 壁面温度/K 转速/(r/min) 出口压力 0.5 0.4 绝热 2 250 0.5 0.3 绝热 2 250 0.5 0.2 绝热 2 250 0.5 0.1 绝热 2 250 0.5 0.01 绝热 2 250 壁面温度 0.5 0.4 300 2 250 0.5 0.4 313 2 250 0.5 0.4 333 2 250 0.5 0.4 353 2 250 0.5 0.4 373 2 250 转速 0.5 0.4 绝热 1 000 0.5 0.4 绝热 2 000 0.5 0.4 绝热 3 000 0.5 0.4 绝热 4 000 0.5 0.4 绝热 5 000 表 4 不同壁面温度下p1点温度上升量
Table 4. The rise of temperature at different conditions of wall temperatures at point p1
出口压力/MPa 壁面温度/K 转速/(r/min) p1点温升/K 0.4 300 2 250 1.792 0.4 313 2 250 1.026 0.4 333 2 250 0.501 0.4 353 2 250 0.270 0.4 373 2 250 0.165 -
[1] Xu B, Zhang J, Yang H, et al. Investigation on the radial micro-motion about piston of axial piston pump[J]. Chinese Journal of Mechanical Engineering, 2013, 26(2): 325-333. doi: 10.3901/CJME.2013.02.325 [2] Wang X J, Sun Y W, Shen Z Q. Research on oil film characteristics of piston pair in swash plate axial piston pump[J]. High Technology Letters, 2020, 26(3): 306-314. [3] 马俊, 李毅波, 潘阳. 柱塞副温度场数学建模与性能分析[J]. 中南大学学报(自然科学版), 2018, 49(2): 330-338. [4] 徐彦. 斜盘式轴向柱塞泵柱塞副的分析与研究[D]. 太原: 太原科技大学, 2020. [5] 王智慧, 苑士华, 彭增雄. 柱塞副油膜温度分布的数值分析[J]. 汽车工程, 2013, 35(9): 781-784. doi: 10.3969/j.issn.1000-680X.2013.09.005 [6] 訚耀保, 陈昊, 李晶. PP轴向柱塞泵柱塞副温度特性研究[J]. 中国机械工程, 2015, 26(8): 1073-1077,1084. doi: 10.3969/j.issn.1004-132X.2015.08.015 [7] Wieczorek U, Ivantysynova M. Computer aided optimization of bearing and sealing gaps in hydrostatic machines—the simulation tool caspar[J]. International Journal of Fluid Power, 2002, 3(1): 7-20. doi: 10.1080/14399776.2002.10781124 [8] Olems L. Investigations of the temperature behaviour of the piston cylinder assembly in axial piston pumps[J]. International Journal of Fluid Power, 2000, 1(1): 27-39. doi: 10.1080/14399776.2000.10781080 [9] 陈庆瑞. 轴向柱塞泵柱塞副油膜特性测试系统研究[D]. 杭州: 浙江大学, 2008. [10] 马吉恩. 轴向柱塞泵流量脉动及配流盘优化设计研究[D]. 杭州: 浙江大学, 2009.