Analytical Method for Hitting Probability of Supercavity Torpedoes
-
摘要: 建立超空泡鱼雷命中概率的解析模型, 是明确鱼雷射击过程中各项误差源影响规律的有效途径。文中针对超空泡鱼雷直航攻击过程, 考虑平台探测误差和鱼雷航行误差的影响, 建立了鱼雷脱靶量散布模型。同时考虑目标水线面对命中概率的影响, 建立了目标命中范围模型, 并且通过理论分析提出将目标运动误差统一到平台探测误差上, 既能保证计算准确度, 还可有效避免目标二维散布带来的建模困难问题。在此基础上, 建立了超空泡鱼雷命中概率解析模型, 通过与统计方法的对比, 验证了解析模型的计算准确性。此外, 文中还通过灵敏度分析, 明确了初始视线角的探测误差和鱼雷航向误差是对命中概率影响最大的误差源, 可为超空泡鱼雷作战效能的提升提供参考。Abstract: Formulating an analytical model for the hitting probability of supercavity torpedoes is an effective approach to clarify the influence of errors in the attack process. This study establishes a distribution model of the torpedo miss distance during the straight attack of supercavity torpedoes by considering the influence of platform detection and torpedo navigation errors. Simultaneously, considering the influence of the target waterline on the hitting probability, the hitting range model of a target is established, and based on theoretical analysis, this paper proposes unifying the target navigation and platform detection errors, which can ensure the calculation accuracy and effectively avoid modeling difficulties caused by the two-dimensional distribution of the target location. Based on this, an analytical model for the hitting probability of a supercavity torpedo is established, and the computational accuracy of the analytical model is verified by comparing it with a statistical method. A sensitivity analysis is conducted, and the results clarify that the errors with the greatest impact on the hitting probability are the detection errors of the initial line of a sight angle and the torpedo course errors, providing a reference for improving the operational effectiveness of supercavity torpedoes.
-
Key words:
- supercavity torpedo /
- hitting probability /
- analytical method /
- error sensitivity
-
表 1 鱼雷及目标仿真参数列表
Table 1. List of simulation parameters of the torpedo and the target
名称 参数 单次仿真次数 10 000 鱼雷速度/kn 200 目标速度/kn 30 鱼雷速度误差标准差/kn 5 鱼雷航向误差标准差/(°) 0.3 探测目标速度误差标准差/kn 3 探测目标航向误差标准差/(°) 1 目标速度误差标准差/kn 3 目标航向误差标准差/(°) 1 目标初始视线角误差标准差/(°) 0.3 初始雷目距离/km 2~7, 间隔为1 初始目标舷角/(°) 0~180, 间隔为1 表 2 目标船水线半宽值
Table 2. Halfbreadth waterline of target vessel
站号 实际长度/mm 水线半宽/mm −0.6 −5 175.0 9 212.5 0 0 12 640.0 0.5 4 312.5 15 730.0 1.0 8 625.0 18 380.0 1.5 12 937.5 20 502.5 2.0 17 250.0 22 090.0 2.5 21 562.5 23 195.0 3.0 25 875.0 23 847.5 4.0 34 500.0 24 120.0 5.0 43 125.0 24 125.0 6.0 51 750.0 24 125.0 7.0 60 375.0 24 125.0 8.0 69 000.0 24 125.0 9.0 77 625.0 24 125.0 10.0 86 250.0 24 125.0 11.0 94 875.0 24 125.0 12.0 103 500.0 24 125.0 13.0 112 125.0 24 125.0 14.0 120 750.0 24 125.0 15.0 129 375.0 24 125.0 16.0 138 000.0 24 085.0 17.0 146 625.0 22 692.5 18.0 155 250.0 18 240.0 18.5 159 562.5 14 580.0 19.0 163 875.0 10 457.5 19.5 168 187.5 5 795.0 表 3 解析法与统计法偏差范围比较
Table 3. Contrast of deviation range between analytical method and statistical method
偏差范围 态势数 态势占比/% <1% 853 78.55 1%~2% 194 17.86 2%~3.76% 39 3.59 合计 1086 100 -
[1] 邹玉博, 周淇, 成方达. 超空泡鱼雷特点及作战使用分析[J]. 中国科技信息, 2010, 17(21): 53-54.Zou Yu-bo, Zhou Qi, Cheng Fang-da. Analysis of Characteristics and Operational Use of Supercavitation Torpedo[J]. China Science & Technology Information, 2010, 17(21): 53-54. [2] 孙华春, 李长文, 李海玲. 直航鱼雷命中概率模型与仿真[J]. 舰船电子工程, 2009, 29(12): 138-141. doi: 10.3969/j.issn.1627-9730.2009.12.038Sun Hua-chun, Li Chang-wen, Li Hai-ling. The Hitting Probability Model and Simulation of Straight Running Torpedo[J]. Ship Electronic Engineering, 2009, 29(12): 138-141. doi: 10.3969/j.issn.1627-9730.2009.12.038 [3] 李勐, 代志恒. 直航鱼雷发现概率的解析计算方法[J]. 指挥控制与仿真, 2017, 39(4): 55-59. doi: 10.3969/j.issn.1673-3819.2017.04.012Li Meng, Dai Zhi-heng. Analytic Method for Calculating Probability of Direct Torpedo[J]. Commend Control & Simulation, 2017, 39(4): 55-59. doi: 10.3969/j.issn.1673-3819.2017.04.012 [4] 宗方勇, 王树宗. 潜用自导/线导鱼雷直航射击功能的战术意义[J]. 舰船科学技术, 2005, 23(1): 52-54.Zong Fang-yong, Wang Shu-zong. The Tactical Significance of Submarine Homing/Wire-Guided Torpedo’s Firing at Straight Running Function[J]. Ship Science and Technology, 2005, 23(1): 52-54. [5] 薄玉成. 武器系统设计理论[M]. 北京: 北京理工大学出版社, 2010. [6] 张治彬, 李新洪, 安继萍. 基于蒙特卡罗法的轻气炮射击精度评估[J]. 空间控制技术与应用, 2019, 45(1): 71-78. doi: 10.3969/j.issn.1674-1579.2019.01.012Zhang Zhi-bin, Li Xin-hong, An Ji-ping. Firing Accurancy Evaluation of Light Gas Gun Based on Monte Carlo Method[J]. Aerospace Control and Application, 2019, 45(1): 71-78. doi: 10.3969/j.issn.1674-1579.2019.01.012 [7] 许建胜, 苏坡, 戎永杰, 等. 基于蒙特卡洛法的末敏弹命中点散布研究[J]. 弹箭与制导学报, 2015, 35(6): 29-32.Xu Jian-sheng, Su Po, Rong Yong-jie, et al. Research on the Hitting Point Distribution of Terminal Sensing Ammunition Based on Monte-Carlo Method[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(6): 29-32. [8] 李宗吉, 程善政, 刘洋. 蒙特卡洛模拟法计算航空自导深弹命中概率[J]. 弹箭与制导学报, 2012, 32(2): 22-24. doi: 10.3969/j.issn.1673-9728.2012.02.006Li Zong-ji, Cheng Shan-zheng, Liu Yang. The Calculation of Aerial Homing-depth Charge Hitting Probability by Monte-Carlo Method[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(2): 22-24. doi: 10.3969/j.issn.1673-9728.2012.02.006 [9] 吴宝奇, 关晓存, 石敬斌. 电磁线圈发射舰载反鱼雷鱼雷拦截概率仿真分析[J]. 火炮发射与控制学报, 2021, 42(4): 7-12.Wu Bao-qi, Guan Xiao-cun, Shi Jing-bin. Intercept Probability Simulation and Analysis of Electromagnetic Coil Launched Anti-Torpedo Torpedo[J]. Journal of Gun Launch & Control, 2021, 42(4): 7-12. [10] 刘强, 袁富宇. 声自导鱼雷发现概率统计计算新思路[J]. 制造业自动化, 2011, 33(24): 79-83, 111. doi: 10.3969/j.issn.1009-0134.2011.12(x).27Liu Qiang, Yuan Fu-yu. A New Statistical Method of Calculating Detecting Probability of Acoustic Homing Torpedo[J]. Manufacturing Automation, 2011, 33(24): 79-83, 111. doi: 10.3969/j.issn.1009-0134.2011.12(x).27 [11] 张海军, 王建斌, 谢强, 等. 坦克火力系统单发命中概率的几种计算方法[J]. 火力与指挥控制, 2012, 37(S1): 152-154.Zhang Hai-jun, Wang Jian-bin, Xie Qiang, et al. Calculations for Hit Probability of Single Firing in Tank Fire System[J]. Fire Control and Command Control, 2012, 37(S1): 152-154. [12] 袁富宇, 代志恒, 肖碧琴. 基于误差折算的鱼雷一次转角射击命中/发现概率解析计算方法[J]. 水下无人系统学报, 2020, 28(3): 303-308. doi: 10.11993/j.issn.2096-3920.2020.03.010Yuan Fu-yu, Dai Zhi-heng, Xiao Bi-qin. An Analytical Calculation Mothed of the Hitting/Finding Probability of Torpedo One-Time Turning-Angle Shooting Based on Error Conversion[J]. Journal of Unmanned Undersea Systems, 2020, 28(3): 303-308. doi: 10.11993/j.issn.2096-3920.2020.03.010 [13] 张志勇, 王团团, 郭浩, 等. 弹丸初速可调的电磁轨道炮对空射击策略[J]. 兵工学报, 2021, 42(2): 430-437. doi: 10.3969/j.issn.1000-1093.2021.02.020Zhang Zhi-yong, Wang Tuan-tuan, Guo Hao, et al. Antiaircraft Firing Strategy of Electromagnetic Railgun with Adjustable Muzzle Velocity of Projectile[J]. Acta Armamentarii, 2021, 42(2): 430-437. doi: 10.3969/j.issn.1000-1093.2021.02.020 [14] 李长文, 任行者. 计算声自导鱼雷直进射击成功概率的解析方法[J]. 指挥控制与仿真, 2009, 31(1): 54-57. doi: 10.3969/j.issn.1673-3819.2009.01.015Li Chang-wen, Ren Xing-zhe. Analytic Method for Computing the Successful Probability of Straightforward Shooting by Sound-Guided Torpedo[J]. Command Control & Simulation, 2009, 31(1): 54-57. doi: 10.3969/j.issn.1673-3819.2009.01.015 [15] 武志东, 于雪泳, 许兆鹏. 潜射鱼雷命中概率的解析计算通式及应用[J]. 水下无人系统学报, 2021, 29(2): 203-209. doi: 10.11993/j.issn.2096-3920.2021.02.011Wu Zhi-dong, Yu Xue-yong, Xu Zhao-peng. Analytic Formula and Employment of the Hitting Probability for Sub-Launched Torpedo[J]. Journal of Unmanned Undersea Systems, 2021, 29(2): 203-209. doi: 10.11993/j.issn.2096-3920.2021.02.011 [16] 刘震宇. 导弹对建筑目标射击命中概率分析[J]. 指挥控制与仿真, 2020, 42(4): 103-106. doi: 10.3969/j.issn.1673-3819.2020.04.020Liu Zhen-yu. Hitting Probability Analysis of Missile Firing at Building Target[J]. Command Control & Simulation, 2020, 42(4): 103-106. doi: 10.3969/j.issn.1673-3819.2020.04.020