• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合Q学习与PID控制器的AUV跟踪控制

闫 敬 李文飚 杨 晛 李兴龙 罗小元

闫 敬, 李文飚, 杨 晛, 李兴龙, 罗小元. 融合Q学习与PID控制器的AUV跟踪控制[J]. 水下无人系统学报, 2021, 29(5): 565-574. doi: 10.11993/j.issn.2096-3920.2021.05.008
引用本文: 闫 敬, 李文飚, 杨 晛, 李兴龙, 罗小元. 融合Q学习与PID控制器的AUV跟踪控制[J]. 水下无人系统学报, 2021, 29(5): 565-574. doi: 10.11993/j.issn.2096-3920.2021.05.008
YAN Jing, LI Wen-biao, YANG Xian, LI Xing-long, LUO Xiao-yuan. Tracking Control for AUV by Combining Q Learning and a PID Controller[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 565-574. doi: 10.11993/j.issn.2096-3920.2021.05.008
Citation: YAN Jing, LI Wen-biao, YANG Xian, LI Xing-long, LUO Xiao-yuan. Tracking Control for AUV by Combining Q Learning and a PID Controller[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 565-574. doi: 10.11993/j.issn.2096-3920.2021.05.008

融合Q学习与PID控制器的AUV跟踪控制

doi: 10.11993/j.issn.2096-3920.2021.05.008
基金项目: 国家自然科学基金重点项目(编号: 62033011)
详细信息
    作者简介:

    闫 敬(1985-), 男, 博士生导师, 教授, 研究方向为水下机器人/传感网协同监测.

  • 中图分类号: TJ630.33 TP273.2

Tracking Control for AUV by Combining Q Learning and a PID Controller

  • 摘要: 为进一步提升自主水下航行器(AUV)跟踪控制性能, 文中设计了一种融合Q学习与比例-积分-微分(PID)控制器的AUV跟踪控制算法。首先, 根据AUV的跟踪误差构建基于PID控制器的跟踪控制算法。为提升跟踪的静态与动态性能, 将PID控制器参数的自适应调整描述为一种Q学习问题。然后采用动作更新的形式对不同状态下的Q值进行迭代优化, 直到每个状态-动作所对应Q值保持不变。相比于传统的PID控制器, 该算法不仅可以保持PID简单实用的特点, 还可根据环境信息的变化进行参数自适应调整。 仿真与试验结果均验证了所提算法的有效性。

     

  • [1] 赵振轶, 李亚安, 陈晓, 等. 基于双观测站的水下机动目标被动跟踪[J]. 水下无人系统学报, 2018, 26(1): 40-45.

    Zhao Zhen-yi, Li Ya-an, Chen Xiao, et al. Passive Tracking of Underwater Maneuvering Target Based on Double Observation Station[J]. Journal of Unmanned Undersea Systems, 2018, 26(1): 40-45.
    [2] 杜度. 基于RBF神经网络参数自整定的AUV深度控制[J]. 水下无人系统学报, 2019, 27(3): 284-289.

    Du Du. Parameters Self-Tuning for Depth Control of AUV Based on RBF Neural Network[J]. Journal of Unmanned Undersea Systems, 2019, 27(3): 284-289.
    [3] 温志文, 蔡卫军, 杨春武. 基于改进蚁群算法的UUV三维路径规划方法[J]. 鱼雷技术, 2016, 24(2): 120-125.

    Wen Zhi-wen, Cai Wei-jun, Yang Chun-wu. Three- dimensional Path Planning Method Based on Improved Ant Colony Algorithm for UUV[J]. Torpedo Technology, 2016, 24(2): 120-125.
    [4] Shen C, Shi Y, Buckham B. Trajectory Tracking Control of an Autonomous Underwater Vehicle Using Lyapunov-based Model Predictive Control[J]. IEEE Transactions on Industrial Electronics, 2017, 65(7): 5796-5805.
    [5] Li Y, Wei C, Wu Q, et al. Study of 3 Dimension Trajectory Tracking of Underactuated Autonomous Underwater Vehicle[J]. Ocean Engineering, 2015, 105(1): 270-274.
    [6] Carlucho I, Paula M, Villar S, et al. Incremental Q-learning Strategy for Adaptive PID Control of Mobile Robots[J]. Expert Systems with Application, 2017, 80(1): 183-199.
    [7] 赵健, 白春江, 章文俊. 水下潜器姿态角的分数阶PID 控制研究[J]. 船舶科学技术, 2016, 38(11): 129-132.

    Zhao Jian, Bai Chun-jiang, Zhang Wen-jun. Research on Fractional-order PID Control for Underwater Vehicle Attitude Angle[J]. Ship Science and Technology, 2016, 38(11): 129-132.
    [8] Ban H, Yang X, Luo X, et al. Fuzzy-based Tracking Controller Design for Autonomous Underwater Vehicle[C]//Chinese Control Conference, Dalian, China: IEEE, 2017: 4813-4818.
    [9] Hernandez-Alvarado R, Garcia-Valdovinos L, Salgado-Jimenez T, et al. Self-tuned PID Control Based on Backpropagation Neural Networks for underwater Vehicles [C]//International Conference on Ocean. Monterey, USA: IEEE, 2016, 1-5.
    [10] Wu H, Song S, You K. Depth Control of Model-Free AUVs via Reinforcement Learning[J]. IEEE Transactions on System, Man, and Cybernetics, 2019, 49(12): 2499-2510.
    [11] Kim M. Greedy Learning of Sparse Eigenfaces for Face Recognition and Tracking[J]. International Journal of Fuzzy Logic and Intelligent Systems, 2014, 14(3): 162-170.
    [12] Luo B, Liu D, Huang T, et al. Model-Free Optimal Tracking Control via Critic-Only Q-Learning[J]. IEEE Transactions on Neural Networks & Learning Systems, 2016, 27(10): 2134-2144.
    [13] Yuan C, He H, Wang C. Cooperative Deterministic Learning-based Formation Control for a Group of Nonlinear Uncertain Mechanical Systems[J]. IEEE Transactions on Industrial Informatics, 2019, 15(1): 319-333.
    [14] Yan J, Luo X, Li X, et al. Joint Localization and Tracking for Autonomous Underwater Vehicle: A Reinforcement Learning Based Approach[J]. IET Control Theory & Applications, 2019, 13(17): 2856-2865.
    [15] Yan J, Gao J, Yang X, et al. Tracking Control of a Remotely Operated Underwater Vehicle with Time Delay and Actuator Saturation[J]. Ocean Engineering, 2019, 184(1): 299-310.
    [16] Yan J, Gao J, Yang X, et al. Position Tracking Control of Remotely Operated Underwater Vehicles with Communication Delay[J]. IEEE Transactions on Control Systems Technology, 2019, 28(6): 2506-2514.
    [17] Galetzka A, Bontinck Z, Romer U, et al. A Multilevel Monte Carlo Method for High-dimensional Uncertainty Quantification of Low-frequency Electromagnetic Devices[J]. IEEE Transactions on Magnetics, 2019, 55(8): 1-12.
    [18] Wan Y, Roy S, Lesieutre B, et al. Uncertainty Evaluation Through Mapping Identification in Intensive Dynamic Simulations[J]. IEEE Transactions on System, Man, and Cybernetics, 2010, 40(5): 1094-1104.
    [19] Lewis F L, Vrabie D. Reinforcement Learning and Adaptive Dynamic Programming for Feedback Control[J]. IEEE Circuits and Systems Magazine, 2009, 9(3): 32-50.
    [20] Huang S M, Giving S N. A Q-Learning Approach to Flocking With UAVs in a Stochastic Environment[J]. IEEE Transactions on Cybernetics, 2017, 47(1): 186-197.
  • 加载中
计量
  • 文章访问数:  1439
  • HTML全文浏览量:  24
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-27
  • 修回日期:  2020-12-16
  • 刊出日期:  2021-10-31

目录

    /

    返回文章
    返回
    服务号
    订阅号