• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AUV实时避障算法研究进展

郭银景 鲍建康 刘 琦 屈衍玺 吕文红

郭银景, 鲍建康, 刘 琦, 屈衍玺, 吕文红. AUV实时避障算法研究进展[J]. 水下无人系统学报, 2020, 28(4): 351-358. doi: 10.11993/j.issn.2096-3920.2020.04.001
引用本文: 郭银景, 鲍建康, 刘 琦, 屈衍玺, 吕文红. AUV实时避障算法研究进展[J]. 水下无人系统学报, 2020, 28(4): 351-358. doi: 10.11993/j.issn.2096-3920.2020.04.001
GUO Yin-jing, BAO Jian-kang, LIU Qi, QU Yan-xi, Lü Wen-hong. Research Progress of Real-Time Obstacle Avoidance Algorithms for Unmanned Undersea Vehicle: A Review[J]. Journal of Unmanned Undersea Systems, 2020, 28(4): 351-358. doi: 10.11993/j.issn.2096-3920.2020.04.001
Citation: GUO Yin-jing, BAO Jian-kang, LIU Qi, QU Yan-xi, Lü Wen-hong. Research Progress of Real-Time Obstacle Avoidance Algorithms for Unmanned Undersea Vehicle: A Review[J]. Journal of Unmanned Undersea Systems, 2020, 28(4): 351-358. doi: 10.11993/j.issn.2096-3920.2020.04.001

AUV实时避障算法研究进展

doi: 10.11993/j.issn.2096-3920.2020.04.001
基金项目: 山东省重点研发计划(公益类专项)项目(2018GHY115022); 国家自然科学基金(61471224)
详细信息
    作者简介:

    郭银景(1966-), 男, 博士, 教授, 主要研究方向为无线通信、AUV导航与控制.

  • 中图分类号: U674.941 TJ630.33

Research Progress of Real-Time Obstacle Avoidance Algorithms for Unmanned Undersea Vehicle: A Review

  • 摘要: 针对目前在研究自主水下航行器(AUV)实时避障算法过程中出现的重点难点及研究趋势, 文中从动态障碍物、多约束与多目标以及海流干扰3方面分析了水下实时避障算法的研究难点, 然后从人工势场法、模糊逻辑法和智能仿生算法3个方面重点阐述水下实时避障算法的研究进展。对比3种避障算法的研究现状得知, 通过修正势场函数、引入AUV运动约束、考虑障碍物相对速度和复杂海流影响等, 使改进的人工势场法克服了陷阱问题、局部极小值和目标不可达等问题, 成为解决AUV实时避障问题的重点研究方向。在躲避动态障碍物方面, 多种避障算法融合将成为一种趋势; 在多约束与多目标问题中, 能耗问题尤为重要却很少被作为参数引入到避障算法中, 具有很大的研究潜力; 针对海流干扰问题, 多数避障算法仅考虑了水平方向的定常流或涡流, 因此考虑三维海流干扰也是未来水下实时避障算法的研究方向之一。

     

  • [1] 李硕, 刘健, 徐会希, 等. 我国深海自主水下机器人的研究现状[J]. 中国科学: 信息科学, 2018, 48(9): 1152-1164.

    Li Shuo, Liu Jian, Xu Hui-xi, et al. Research Status of Deep-Sea Autonomous Underwater Robot in China[J]. Chinese Science: Information Science, 2018, 48(9): 1152-1164.
    [2] 钟宏伟, 李国良, 宋林桦, 等. 国外大型无人水下航行器发展综述[J]. 水下无人系统学报, 2018, 26(4): 273- 282.

    Zhong Hong-wei, Li Guo-liang, Song Lin-hua, et al. A Review of the Development of Large-Scale Unmanned Underwater Vehicles Abroad[J]. Journal of Unmanned Undersea Systems, 2018, 26(4): 273-282.
    [3] Han G, Long X, Zhu C, et al. A High-Availability Data Collection Scheme based on Multi-AUVs for Underwater Sensor Networks[J]. IEEE Transactions on Mobile Computing, 2020, 19(5): 1010-1022.
    [4] LI D L, Wang P, Du L. Path Planning Technologies for Autonomous Underwater Vehicles-A Review[J]. IEEE Access, 2019, 7: 9745-9768.
    [5] 潘光, 宋保维, 黄桥高, 等. 水下无人系统发展现状及其关键技术[J]. 水下无人系统学报, 2017, 25(2): 44-51.

    Pan Guang, Song Bao-wei, Huang Qiao-gao, et al. De-velopment Status and Key Technologies of Underwater Unmanned System[J]. Journal of Unmanned Undersea System, 2017, 25(2): 44-51.
    [6] Li J, Lee M, Lee W, et al. Real Time Obstacle Detection in a Water Tank Environment and its Experimental Study[C]//2014 IEEE/OES Autonomous Underwater Vehicles(AUV). Oxford, MS, USA: IEEE, 2014: 1-5.
    [7] Xidias E, Zissis D. Real Time Autonomous Maritime Navigation Using Dynamic Visibility Graphs[C]//2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV). Porto, Portugal: IEEE, 2018: 1-6.
    [8] Huang C, Huang B, Zhang Y. An Improved A* Algorithm Applied to Three-Dimensional Space[C]//2019 IEEE 8th Jo- int International Information Technology and Artificial Intelligence Conference(ITAIC). Chongqing, China: IEEE, 2019.
    [9] Lee J, Kim D W. An Effective Initialization Method for Genetic Algorithm-Based Robot Path Planning Using a Directed Acyclic Graph[J]. Information Sciences, 2016, 332: 1-18.
    [10] Montiel O, Sepulveda R, Orozco-Rosas U. Optimal Path Planning Generation for Mobile Robots Using Parallel Evolutionary Artificial Potential Field[J]. Journal of Intelligent & Robotic Systems, 2015, 79(2): 237-257.
    [11] 杨健, 孟凡尘. 基于人工势场法的微小型AUV避障运动方法研究[J]. 水雷战与舰船防护, 2017, 25(4): 67-71.

    Yang Jian, Meng Fan-chen. Research on Obstacle Avoidance Method of Micro AUV Based on Artificial Potential Field Method[J]. Mine Warfare and Ship Protection, 2017, 25(4): 67-71.
    [12] 李东方, 王超, 邓宏彬, 等. 基于人工势场和RRT算法的机器蛇水下三维避障算法[J]. 兵工学报, 2017, 38(S1): 205-214.

    Li Dong-fang, Wang Chao, Deng Hong-bin, et al. Three Dimensional Obstacle Avoidance Algorithm Based on Artificial Potential Field and RRT Algorithm[J]. Journal of Military Engineering, 2017, 38(S1): 205-214.
    [13] 吴正平, 唐念, 陈永亮, 等. 基于改进人工势场法的AUV路径规划[J]. 化工自动化及仪表, 2014, 41(12): 1421-1423.

    Wu Zheng-ping, Tang Nian, Chen Yong-liang, et al. AUV Path Planning Based on Improved Artificial Potential Field Method[J]. Chemical automation and instrumentation, 2014, 41(12): 1421-1423.
    [14] 程志, 张志安, 李金芝, 等. 改进人工势场法的移动机器人路径规划[J]. 计算机工程与应用, 2019, 55(23): 1-6.

    Cheng Zhi, Zhang Zhi-an, Li Jin-zhi, et al. Path Planning of Mobile Robot Based on Improved Artificial Potential Field Method[J]. Computer Engineering and Application, 2019, 55(23): 1-6.
    [15] Duan H B, Huang L Z. Imperialist Competitive Algorithm Optimized Artificial Neural Networks for UCAV Global Path Planning[J]. Neurocomputing, 2014, 125: 166-171.
    [16] 林政, 吕霞付. 基于改进模糊算法的水面无人艇自主避障[J]. 计算机应用, 2019, 39(9): 1-7.

    Lin Zheng, Lü Xia-fu. Autonomous Obstacle Avoidance of Surface Unmanned Vehicle Based on Improved Fuzzy Algorithm[J]. Computer application, 2019, 39(9): 1-7.
    [17] 张禹, 邢志伟, 黄俊峰, 等. 远程自治水下机器人三维实时避障方法研究[J]. 机器人, 2003, 25(6): 481-485.

    Zhang Yu, Xing Zhi-wei, Huang Jun-feng, et al. Research on 3D Real-Time Obstacle Avoidance Method of Autonomous Underwater Vehicle[J]. Robot, 2003, 25(6): 481-485.
    [18] 韩伟, 孙凯彪. 基于模糊人工势场法的智能全向车路径规划[J]. 计算机工程与应用, 2018, 54(6): 105-109, 167.

    Han Wei, Sun Kai-biao. Intelligent Omnidirectional Vehicle Path Planning Based on Fuzzy Artificial Potential Field Method[J]. Computer Engineering and Application, 2018, 54(6): 105-109, 167.
    [19] 张汝波, 李建军, 杨玉. 基于改进蚁群算法的AUV航路避障任务规划[J]. 华中科技大学学报(自然科学版), 2015, 43(S1): 428-430.

    Zhang Ru-bo, Li Jian-jun, Yang Yu. AUV Route Obstacle Avoidance Task Planning Based on Improved Ant Colony Algorithm[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2015, 43(S1): 428-430.
    [20] 马焱, 肖玉杰, 陈轶, 等. 基于改进烟花-蚁群算法的海流环境下水下无人潜航器的避障路径规划[J]. 导航与控制, 2019, 18(1): 51-59.

    Ma Yi, Xiao Yu-jie, Chen Yi, et al. Obstacle Avoidance Path Planning of Underwater Vehicle Based on Improved Fireworks Ant Colony Algorithm[J]. Navigation and Control, 2019, 18(1): 51-59.
    [21] 陈文渊, 沈斌坚. 基于三维成像声纳技术的AUV前视避障方法[J]. 传感器与微系统, 2015, 34(4): 12-15.

    Chen Wen-yuan, Shen Bin-jian. Obstacle Avoidance Method of AUV Based on 3D Imaging Sonar Technology[J]. Sensors and Microsystems, 2015, 34(4): 12-15.
    [22] 段群杰. 水下机器人实时路径规划方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2007.
    [23] Endo G, Togawa K, Hirose S. Study on Self-Contained and Terrain Adaptive Active Cord Mechanism[C]//Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems(Cat. No.99CH36289). Kyongju, South Korea: IEEE, 1999: 1399-1405.
    [24] Dijkstra E W. A Note on Two Problems in Connection with Graphs[J]. Numerische Mathematics, 1959, 1(1): 269-271.
    [25] Hart P E, Nilsson N J, Raphael B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107.
    [26] Howden W E. Solution Plans and Interactive Problem Solving[J]. Computers & Graphics, 1975, 1(1): 21-26.
    [27] Lozano-Pérez T, Wesley M A. An Algorithm for Planning Collision-Free Paths among Polyhedral Obstacles[J]. Communications of the Acm, 1979, 22(10): 560-570.
    [28] Gowda I, Kirkpatrick D, Lee D, et al. Dynamic Voronoi diagrams[J]. IEEE Transactions on Information Theory, 1983, 29(5): 724-731.
    [29] Takahashi O, Schilling R J. Motion Planning in a Plane Using Generalized Voronoi Diagrams[J]. IEEE Transactions on Robotics and Automation, 1989, 5(2): 143-150.
    [30] Liu Y H, Arimoto S. Finding the Shortest Path of a Disc Among Polygonal Obstacles Using a Radius-Independent Graph[J]. IEEE Transactions on Robotics and Automation, 1995, 11(5): 682-691.
    [31] Khatib O. Real-time Obstacle Avoidance for Manipulators and Mobile Robots[J]. The International Journal of Robotics Research, 1986, 5(1): 90-98.
    [32] Borenstein J, Koren Y. The Vector Field Histogram-Fast Obstacle Avoidance for Mobile Robots[J]. IEEE Transactions on Robotics & Automation, 2002, 7(3): 278-288.
    [33] Ulrich I, Borenstein J. VFH+: Reliable Obstacle Avoidance for Fast Mobile Robots[C]//Proceedings of the 1998 IEEE International Conference on Robotics and Automation. Leuven, Belgium: IEEE, 1998: 1572-1577.
    [34] Kennedy J, Eberhart R. Particle Swarm Optimization[C]// Proceedings of ICNN’95-International Conference on Neural Networks. Perth, WA, Australia: IEEE, 1995: 1942-1948.
    [35] Kuffner J J, Lavalle S M. RRT-connect: An Efficient Ap-proach to Single-Query Path Planning[J]. IEEE International Conference on Robotics & Automation, 2000, 2(1): 995-1001.
    [36] 高云峰, 黄海. 复杂环境下基于势场原理的路径规划方法[J]. 机器人, 2004, 26(2): 114-118.

    Gao Yun-feng, Huang Hai. Path Planning Method Based on Potential Field Principle in Complex Environment[J]. Robot, 2004, 26(2): 114-118.
    [37] 刘学敏, 李英辉, 徐玉如. 基于运动平衡点的水下机器人自主避障方式[J]. 机器人, 2001, 23(3): 270-274.

    Liu Xue-min, Li Ying-hui, Xu Yu-ru. Autonomous Obstacle Avoidance of Underwater Robot Based on Motion Balance Point[J]. Robot, 2001, 23(3): 270-274.
    [38] 孙玉山, 张英浩, 常文田, 等. 基于改进运动平衡点的水下机器人自主避障方法研究[J]. 中国造船, 2013, 54 (2): 17-25.

    Sun Yu-shan, Zhang Ying-hao, Chang Wen-tian, et al. Research on Autonomous Obstacle Avoidance Method of Underwater Robot Based on Improved Motion Balance Point[J]. China Shipbuilding, 2013, 54(2): 17-25.
    [39] 李东方, 李科伟, 邓宏彬, 等. 基于人工势场与IB- LBM的机器蛇水中2D避障控制算法[J]. 机器人, 2018, 40(3): 346-359.

    Li Dong-fang, Li Ke-wei, Deng Hong-bin, et al. 2D Obstacle Avoidance Control Algorithm in Snake Water Based on Artificial Potential Field and IB-LBM[J]. Robot, 2018, 40(3): 346-359.
    [40] 李沛伦, 杨启. 基于改进人工势场法的水下滑翔机路径规划[J]. 舰船科学技术, 2019, 41(7): 89-93.

    Li Pei-lun, Yang Qi. Underwater Glider Path Planning Based on Improved Artificial Potential Field Method[J]. Ship Science and Technology, 2019, 41(7): 89-93.
    [41] 王奎民, 赵玉飞, 侯恕萍, 等. 一种改进人工势场的UUV动碍航物规避方法[J]. 智能系统学报, 2014, 9(1): 47-52.

    Wang Kui-min, Zhao Yu-fei, Hou Shu-ping, et al. A Method to Improve UUV Obstacle Avoidance of Artificial Potential Field[J]. Journal of Intelligent Systems, 2014, 9(1): 47-52.
    [42] 姚鹏, 解则晓. 基于修正导航向量场的AUV自主避障方法[J/OL]. 自动化学报. https://kns.cnki.net/KCMS/ detail/11.2109.TP.20190219.1551.005.html, 2019-02-19.

    Yao Peng, Jie Ze-xiao. AUV Autonomous Obstacle Avoidance Method Based on Modified Navigation Vector Field[J]. Acta Automatica Sinica. https://kns.cnki.net/KC MS/detail/11. 2109.TP.20190219.1551.005.html, 2019-02-19.
    [43] Anwary A R, Lee Y, Jung H, et al. Unsupervised Real-time Obstacle Avoidance Technique Based on a Hybrid Fuzzy Method for AUVs[J]. International Journal of Fuzzy Logic and Intelligent Systems, 2008, 8(1): 82-86.
    [44] Sun B, Zhu D Q, Jiang L S, et al. A Novel Fuzzy Control Algorithm for Three-Dimensional AUV Path Planning Based on Sonar Model[J]. Journal of Intelligent & Fuzzy Systems, 2014, 26(6): 2913-2926.
    [45] Sun B, Zhu D Q, Yang S X. An Optimized Fuzzy Control Algorithm for Three-Dimensional AUV Path Planning[J]. International Journal of Fuzzy Systems, 2018, 20(2): 597-610.
    [46] Sahu B K, Subudhi B. Flocking Control of Multiple AUVs Based on Fuzzy Potential Functions[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(5): 2539-2551.
    [47] Ghatee M, Mohades A. Motion Planning in Order to Optimize the Length and Clearance Applying a Hopfield Neural Network[J]. Expert Systems with Applications, 2009, 36: 4688-4695.
    [48] Tavares J. Bio-inspired Algorithms for the Vehicle Routing Problem(Studies in Computational Intelligence)[M]. Berlin: Springer, 2009.
    [49] Yan M Z, Zhu D Q. An Algorithm of Complete Coverage Path Planning for Autonomous Underwater Vehicles[J]. Key Engineering Materials, 2011, 467-469: 1377-1385.
    [50] Li S, Guo Y. Neural-network based AUV Path Planning in Estuary Environments[C]//Proceedings of the 10th World Congress on Intelligent Control and Automation. Beijing, China: 10th World Congress on Intelligent Control and Automation, 2012: 3724-3730.
    [51] 朱大奇, 孙兵, 李利. 基于生物启发模型的AUV三维自主路径规划与安全避障算法[J]. 控制与决策, 2015, 30(5): 798-806.

    Zhu Da-qi, Sun Bing, Li Li. AUV 3D Autonomous Path Planning and Obstacle Avoidance Algorithm Based on Bioheuristic Model[J]. Control and decision, 2015, 30(5): 798-806.
    [52] Huang Z R, Zhu D Q, Sun B. A Multi-AUV Cooperative Hunting Method in 3-D Underwater Environment with Obstacle[J]. Engineering Applications of Artificial Intel- ligence, 2016, 50: 192-200.
    [53] 朱大奇, 刘雨, 孙兵, 等. 自治水下机器人的自主启发式生物启发神经网络路径规划算法[J]. 控制理论与应用, 2019, 36(2): 183-191.

    Zhu Da-qi, Liu Yu, Sun Bing, et al. Autonomous Heuristic Bioheuristic Neural Network Path Planning Algorithm for Autonomous Underwater Vehicles[J]. Control Theory and Application, 2019, 36(2): 183-191.
    [54] Liu H, Xu B, Lu D J, et al. A Path Planning Approach for Crowd Evacuation in Buildings Based on Improved Artificial Bee Colony Algorithm[J]. Applied Sofit Computing, 2018, 68: 360-376.
    [55] Wei K, Ren B Y. A Method on Dynamic Path Planning for Robotic Manipulator Autonomous Obstacle Avoidance Based on an Improved RRT Algorithm[J]. Sensors, 2018, 18(2): 571.
    [56] Patle B K, Pandey A, Jagadeesh A, et al. Path Planning in Uncertain Environment by Using Firefly Algorithm[J]. Defence Technology, 2018(14): 691-701.
    [57] Yao P, Zhao S. Three-Dimensional Path Planning for AUV Based on Interfered Fluid Dynamical System Under Ocean Current[J]. IEEE Access, 2018, 6: 42904-42916.
    [58] 孙兵, 朱大奇, 杨元元. 基于粒子群优化的自治水下机器人模糊路径规划[J]. 高技术通讯, 2013, 23(12): 1284-1291.

    Sun Bing, Zhu Da-qi, Yang Yuan-yuan. Fuzzy Path Planning of Autonomous Underwater Vehicle Based on Particle Swarm Optimization[J]. High Tech Communication, 2013, 23(12): 1284-1291.
    [59] 罗颀栋. 水下球形机器人的运动控制方法研究[D]. 北京: 北京邮电大学, 2017.
    [60] 田广, 刘和祥, 赵海鹰, 等. 自治式水下机器人避障行为机制研究[J]. 传感器与微系统, 2009, 28(12): 59-63.

    Tian Guang, Liu He-xiang, Zhao Hai-ying, et al. Research on Obstacle Avoidance Mechanism of Autonomous Underwater Vehicle[J]. Sensors and Microsystems, 2009, 28 (12): 59-63.
  • 加载中
计量
  • 文章访问数:  862
  • HTML全文浏览量:  27
  • PDF下载量:  351
  • 被引次数: 0
出版历程
  • 刊出日期:  2020-08-31

目录

    /

    返回文章
    返回
    服务号
    订阅号