Research Status and Development Trend of Multi-UUV Coordinated Control Technology: A Review
-
摘要: 为了使无人水下航行器(UUV)更好地完成复杂海洋任务, 需要通过多UUV系统协调控制来实现大规模协同侦察、作战、搜索及营救等任务。文中对编队控制、任务分配、协调路径规划和围捕等多UUV协调控制研究中的关键技术研究现状及进展进行综述, 重点分析了编队控制中的队形保持、队形重构、协同避障以及编队控制衍生出的集群控制等问题。最后指出, 应加强对强耦合非线性模型的协调控制、弱通信约束条件下的协调控制以及异构多UUV系统的协调控制等研究工作, 以实现复杂海洋环境下多UUV的有效协调控制。Abstract: Coordinated control of multi-unmanned undersea vehicle(UUV) is necessary to complete the missions like cooperative reconnaissance, cooperative combat, cooperative search and cooperative rescue. In this paper, the research status and development of key technologies in coordinated control of multi-UUV worldwide are summarized in terms of formation control, task assignment, coordinated path planning and target capturing. The formation maintenance, the formation reconfiguration, the cooperative obstacle avoidance, and the swarm control derived from formation control are discussed in detail. It is emphasized that more attention should be paid to the coordinated control of strongly-coupled non-linear model, the coordinated control under limited communication constraints in underwater environment, and the coordinated control of heterogeneous multi-UUV systems, so as to achieve a more effective coordinated control method of multi-UUV in complex marine environment
-
[1] 严浙平, 周佳加. 水下无人航行器控制技术[M]. 北京: 国防工业出版社, 2015. [2] Yoon S, Qiao C M. Cooperative Search and Survey Using Autonomous Underwater Vehicles(AUVs)[J]. IEEE Transactions on Parallel and Distributed Systems, 2011, 22(3): 364-379. [3] Sotzing C C. The Design and Implementation of A Multi-Agent Architecture to Increase Coordination Efficiency in Multi-AUV Operations[D]. Edinburgh, Scotland: Heriot-Watt University, 2009. [4] 吴迪. 分布式多水下无人航行器搜捕任务协调方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2015. [5] 刘一博. 水下潜航器编队海洋勘测的协调控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017. [6] Curtin T, Bellingham J, Catipovic J, et al. Autonomous Ocean Sampling Networks[J]. Oceanography, 1993, 6(3): 86-94. [7] Cui R X, Ge S S, How B V E, et al. Leader-follower Formation Control of Underactuated Autonomous Un-derwater Vehicles[J]. Ocean Engineering, 2010, 37: 1491- 1502. [8] Hu Z, Ma C, Zhang L, et al. Formation Control of Impulsive Networked Autonomous Underwater Vehicles Under Fixed and Switching Topologies[J]. Neurocomputing, 2015, 147: 291-298. [9] Ni J, Yang S X. Bioinspired Neural Network for Real-time Cooperative Hunting by Multi-robots in Unknown Environments[J]. IEEE Transactions on Neural Networks, 2011, 22: 2062-2077. [10] Lewis M A, Tan K H. High Recision Formation Control of Mobile Robots Using Virtual Structures[J]. Autonomous Robots, 1997(4): 387-403. [11] Li S H, Wang X Y. Finite-time Consensus and Collision Avoidance Control Algorithms for Multiple AUVs[J]. Automatica, 2013, 49: 3359-3367. [12] Chen S, Ho D W C. Consensus Control for Multiple AUVs Under Imperfect Information Caused by Communication Faults[J]. Information Sciences, 2016, 370: 565- 577. [13] Saber R O, Murray R M. Consensus Problems in Networks of Agents with Switching Topology and Time delays[J]. IEEE Transactions on Automatic Control, 2004, 49: 1520-1533. [14] Ren W, Beard R W, Atkins E M. Information Consensus in Multivehicle Cooperative Control[J]. IEEE Control Systems, 2007, 27: 71-82. [15] 王银涛, 严卫生. 多自主水下航行器系统一致性编队跟踪控制[J]. 控制理论与应用, 2013, 30(3): 379-384.Wang Yin-tao, Yan Wei-sheng. Consensus Formation Tracking Control of Multiple Autonomous Underwater Vehicle systems[J]. Control Theory & Applications, 2013, 30(3): 379-384. [16] Zhao L, Yu J, Yu H. Distributed Adaptive Consensus Tracking Control for Multiple AUVs[C]//International Conference on Information Science & Technology. Da Nang, Vietnam: IEEE, 2017: 480-484. [17] 宗群, 王丹丹, 邵士凯, 等. 多无人机协同编队飞行控制研究现状及发展[J]. 哈尔滨工业大学学报, 2017, 49(3): 1-14.Zong Qun, Wang Dan-dan, Shao Shi-kai, et al. Research Status and Development of Multi UAV Coordinated Formation Flight Control[J]. Journalof Harbin Iinsttute of Technology, 2017, 49(3): 1-14. [18] Sahu B K, Gupta M M, Subudhi B. Fuzzy Separation Potential Function Based Flocking Control of Multiple AUVs[C]//In Joint IEEE IFSA World Congr. NAFIPS Anu. Meeting. Edmonton: IEEE, 2013: 1429-1434. [19] Sahu B K, Subudhi B, Dash B K. Flocking Control of Multiple Autonomous Underwater Vehicles[C]//IEEE India Conf.. Kochi: IEEE, 2012: 257-262. [20] Sahu B K, Subudhi B. Flocking Control of Multiple AUVs Based on Fuzzy Potential Functions[J]. IEEE Transac-tionson Fuzzy Systems, 2018, 26(5): 2539-2551. [21] 于大海. 弱通信条件下的多水下机器人任务分配方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2013. [22] 吕洪莉. 面向多目标优化的多AUVs群体协同任务分配[D]. 哈尔滨: 哈尔滨工程大学, 2012. [23] 朱大奇, 李欣, 颜明重. 多自治水下机器人多任务分配的自组织算法[J]. 控制与决策, 2012, 27(8): 1201-1210.Zhu Da-qi, Li Xin, Yan Ming-zhong. Task Assignment Algorithm of Multi-AUV Based on Self-organizing Map[J]. Control and Decision, 2012, 27(8): 1201-1210. [24] Stack J R, Smith C M, Hyland J C. Efficient Reacquisition Path Planning for Multiple Autonomous Underwater-Vehicles [C]//Ocean’04-MTS/IEEE Techno-Ocean’ 04: Bridges across the Oceans Conference Proceedings. Kobe: IEEE, 2004: 1564-1569. [25] 吴小平, 冯正平. 基于蚁群算法的多AUV路径规划仿真研究[J]. 计算机仿真, 2009, 26(1): 150-153.Wu Xiao-ping, Feng Zheng-ping. Simulation of Path Planning of Multiple Autonomous Underwater Vehicles(AUVs) Based on Ant Colony Algorithm[J]. Computer Simulation, 2009, 26(1): 150-153. [26] Zhu D Q, Huang H, Yang S X. Dynamic Task Assignment and Path Planning of Multi-AUV System Based on an Improved Self-organizing Map and Velocity Synthesis Method in Three-dimensional Underwater Workspace[J]. IEEE Transactions on Cybernetics, 2013, 43(2): 504-514. [27] Wang Z, Gu D. Cooperative Target Tracking Control of Multiple Robots[J]. IEEE Transactions on Industrial Electronics, 2012, 59(8): 3232-3240. [28] Kawakami H, Namerikawa T. Cooperative Target Capturing Strategy for Multi-vehicle Systems with Dynamic Network Topology[C]//American Control Conference. Louisiana: IEEE, 2009: 635-640. [29] Kim T H, Sugie T. Cooperative Control for Targetcapturing Task Based on a Cyclic Pursuit Strategy[J]. Automatica, 2007, 43: 1426-1431. [30] Sharma R, Kothari M, Taylor C N, et al. Cooperative Target-capturing with Inaccurate Target Information[C]// American Control Conference, Baltimore, 2010: 5520- 5525. [31] 袁健, 唐功友. 采用一致性算法与虚拟结构的多自主水下航行器编队控制[J]. 智能系统学报, 2011, 6(3): 248-253.Yuan Jian, Tang Gong-you. Formation Control of Autonomous Underwater Vehicles with Consensus Algorithms and Virtual Structure[J]. CAAI Transactions on Intelligent Systems, 2011, 6(3): 248-253. [32] Peng K, Yang Y P. Leader-following Consensus Problem with a Varying-velocity Leader and Time-varying Delays [J]. Advances in Physics, 2009, 388: 193-208.
点击查看大图
计量
- 文章访问数: 2059
- HTML全文浏览量: 78
- PDF下载量: 1035
- 被引次数: 0