Technical Development and Operational Application of Unmanned Surface Combat System
-
摘要: 水面无人作战系统作为海军新概念武器系统, 对于增强海军部队的作战能力及提高作战效能具有重要意义。选取美国“斯巴达侦察兵”、“反潜战持续跟踪无人艇(ACTUV)”、“无人水面和水下航行器Submaran S10”、“通用水面无人艇(CUSV)”和以色列“保护者”、“银枪鱼”为典型代表, 分析了国外水面无人作战系统的研究和应用现状。在此基础上, 探讨了水面无人作战系统的“岸基”和“舰载”两条技术发展路线, 分析了水面无人作战系统的技术发展趋势及其潜在作战应用领域, 并从作战应用角度提出了快速部署与回收、海上应用安全、目标精确识别、自主规划与指挥控制、互操作性以及环境适应性与故障响应等水面无人作战系统部署应用需重点解决的问题。为国内海军水面无人作战系统的建立与发展提供借鉴。Abstract: The unmanned surface combat system(USCS) is a kind of new concept navy weapon system,which has great significance in enhancing the operational capability and operational efficiency of naval forces. This paper introduces and analyzes the researches and applications of the USCSs, including U.S. Navy’s Spartan Scout, anti-submarine warfare (ASW) continuous trail unmanned vessel(ACTUV), unmanned surface and undersea vehicle Submaran S10, common unmanned surface vessel(CUSV), and Israeli Navy’s Protector and Silver Marlin. Furthermore, two technical development routes of shore-based and ship-based USCSs are discussed, and the technical development tendency and potential operational applications are analyzed. The main issues needing to be solved for deployment and operational application of USCS are raised, including rapid deployment and recovery, marine application safety, accurate target recognition, autonomous planning and command control, interoperability, environmental adaptability, and fault response. The purpose of this paper is to provide a reference for Chinese Navy in establishment and development of USCS.
-
[1] 杨文韬. 世界无人水面艇发展综述[J]. 现代军事, 2014(10): 58-60. [2] Matthew Richter. Operational Manning Considerations for Spartan Scout and Sea Fox Unmanned Surface Vehicles (USV)[D]. Monterey: Naval Postgraduate School, 2006. [3] 李家良. 水面无人艇发展与应用[J]. 火力与指挥控制, 2012, 37(6): 203-207.Li Jia-liang. Development and Application of Unmanned Surface Vehicle[J]. Fire Control & Command Control, 2012, 37(6): 203-207. [4] Gilat E. The Human Aspect of Unmanned Surface Vehicles[EB/OL]. (2012-08-05)[2018-03-21]. http://defense- update.com/20120805_human_aspects_of_usv.html. [5] 吴新建. 新加坡部署无人水面航行器可配各种小口径武器[EB/OL]. (2014-11-10)[2018-03-21]. http://mil.sohu. com/20141110/n406251702.html. [6] 李本江, 高孟, 罗向前. 美反潜无人艇作战使用分析[J]. 舰船电子工程, 2012, 32(8): 3-5.Li Ben-jiang, Gao Meng, Luo Xiang-qian. Analysis on the Operational Application of US ACTUV[J]. Ship Electronic Engineering, 2012, 32(8): 3-5. [7] Rogoway T. DARPA’s Unmanned Submarine Stalker Could Change Naval Warfare Forever[EB/OL]. (2015- 04-03)[2018-03-21]. http://foxtrotalpha.jalopnik.com/darpas- unmanned-submarine-stalker-could-change-naval-wa-1695 566032. [8] Scammell R. DARPA Successfully Completes Unmanned Vessel Programme[EB/OL]. (2018-02-01)[2018-03-21]. http://www.na-val-technology.com/news/darpa-successfully- completes-unmanned-vessel-programme/. [9] 华征明. DARPA成功完成“海上猎手”无人水面艇项目 [EB/OL]. (2018-02-02) [2018-03-21]. http://www.dsti.net/ Information/News/108432. [10] Wikipedia. Sea Hunter [EB/OL]. (2018-03-10) [2018-03- 21]. https://en.wikipedia.org/wiki/Sea_Hunter. [11] 温俊华. 美国军民两用“无人水面和水下航行器” Submaran S10 [EB/OL]. (2017-09-20)[2018-03-21]. http://m. sohu.com/n/513295547/. [12] 王珊珊. 美国海军与德事隆公司将为通用无人水面艇增加武器装备[EB/OL]. (2018-01-11)[2018-03-21]. http:// www.dsti.net/Information/ News/108112. [13] 牧野, 远望智库. 无人机集群作战技术研究专刊[EB/OL]. 远望周刊. (2017-05-28)[2018-06-03]. http://www.sohu.com/a/ 145725962_175233. [14] 百度百科. 天象一号[EB/OL]. (2016-01-16)[2018-03- 21].https://baike.baidu.com/item/%E5%A4%A9%E8%B1%A1%E4%B8%80%E5%8F%B7/13211089?fr=aladdin. [15] 种筱娜. 珠海驶出中国首款海洋高速无人船“领航者”[N/OL]. 珠海特区报. (2014-09-15)[2018-03-21]. http://zh. southcn.com/content/2014-09/15/content_108486913.htm. [16] 上海海事大学. 科技创新在海大——“海腾01”号智能高速无人水面艇研发成功[EB/OL]. (2014-11-28)[2018- 03-21]. http://www.shmtu.edu.cn/node/2727. [17] 百度百科. SeaFly-01[EB/OL]. (2016-10-31)[2018-03- 21]. https://baike.baidu.com/item/SeaFly-01/20174610?fr =aladdin. [18] 央广网. 国内首款海洋测量专用无人船平台发布[EB/OL]. (2016-04-28)[2018-03-21]. http://news.cnr.cn /native/city/20160428/t20160428_522016560.shtml. [19] 中国科学院合肥物质科学研究院. 全国首艘无人智能巡逻艇在合肥天鹅湖举行首航仪式[EB/OL]. (2017- 07-06)[2018-03-21]. http://www.hf.cas.cn/xwzx/gzdt/20 1707/t20170704_4822426.html. [20] 云洲智能. 从春晚看中国实力全球首次大规模无人船协同编队震撼亮相[EB/OL]. (2018-02-16)[2018-03-21]. http://www.yunzhoutech.com/News/detail/id/279.html. [21] 牛轶峰, 沈林成, 戴斌, 等. 无人作战系统发展[J]. 国防科技, 2009, 30(5): 1-11.Niu Yi-feng, Shen Lin-cheng, Dai Bin, et al. A Survey of Unmanned Combat System Development[J]. National Defense Science & Technology, 2009, 30(5): 1-11. [22] 林剑峰, 马善伟. 水面高速无人艇自主控制系统研究分析[J]. 船舶与海洋工程, 2014(4): 57-60. [23] 闫超, 张志雄, 罗自荣, 等. 美国海军无人系统作战特点及关键技术分析[J]. 国防科技, 2014, 35(5): 41-45.Yan Chao, Zhang Zhi-xiong, Luo Zi-rong, et al. Characteristic and Key Technologies Analysis of Unmanned System Operation[J]. National Defense Science & Technology, 2014, 35(5): 41-45. [24] 任连生. 基于信息系统的体系作战能力概论[M]. 北京:军事科学出版社, 2010. [25] Department of the Navy. The Navy Unmanned Surface Vehicle( USV) Master Plan[R]. United States Navy, 2007. [26] 尚燕丽. 海军发展无人作战平台的需求、现状与展望[J]. 国防技术基础, 2009(1): 40-43. [27] 高劲松, 余菲, 季晓光. 无人机自主控制等级的研究现状[J]. 电光与控制, 2009, 16(10): 51-54.Gao Jin-song, Yu Fei, Ji Xiao-guang. Current Situation of Studies on Autonomous Control Level of UAVs[J]. Electronics Optics & Control, 2009, 16(10): 51-54.
点击查看大图
计量
- 文章访问数: 1451
- HTML全文浏览量: 31
- PDF下载量: 1532
- 被引次数: 0