• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下滑翔机技术发展现状与展望

沈新蕊 王延辉 杨绍琼 梁 岩 李昊璋

沈新蕊, 王延辉, 杨绍琼, 梁 岩, 李昊璋. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 089-106. doi: 10.11993/j.issn.2096-3920.2018.02.001
引用本文: 沈新蕊, 王延辉, 杨绍琼, 梁 岩, 李昊璋. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 089-106. doi: 10.11993/j.issn.2096-3920.2018.02.001
SHEN Xin-rui, WANG Yan-hui, YANG Shao-qiong, LIANG Yan, LI Hao-zhang. Development of Underwater Gliders:An Overview and Prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 089-106. doi: 10.11993/j.issn.2096-3920.2018.02.001
Citation: SHEN Xin-rui, WANG Yan-hui, YANG Shao-qiong, LIANG Yan, LI Hao-zhang. Development of Underwater Gliders:An Overview and Prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 089-106. doi: 10.11993/j.issn.2096-3920.2018.02.001

水下滑翔机技术发展现状与展望

doi: 10.11993/j.issn.2096-3920.2018.02.001
基金项目: 国家重点研发计划(2016YFC0301100, 2017YFC0305902); 国家自然科学基金优秀青年科学基金(51722508)、面上项目(51475319); 山东省重点研发计划(2016CYJS02A02); 青岛海洋科学与技术国家实验室问海计划(ZR2016WH03)、主任基金(QNLM201705)和“鳌山人才”培养计划(2017ASTCP-OS05, 2017ASTCP-OE01)等项目资助.
详细信息
    通讯作者:

    王延辉(1979-), 男, 博士, 教授, 主要研究方向为水下航行器研制及其海试应用.

  • 中图分类号: TJ630; TP242

Development of Underwater Gliders:An Overview and Prospect

  • 摘要: 水下滑翔机依靠调节浮力实现升沉, 借助水动力实现水中滑翔, 是一种特殊的无人水下航行器, 可对复杂海洋环境进行长时续、大范围的观测与探测, 在全球海洋观测与探测系统中发挥着重要作用。文中综述了国内外水下滑翔机技术的发展现状, 重点介绍了水下滑翔机单机平台及其核心技术的研究进展, 并对支撑水下滑翔机动力学与控制领域的研究进行了归纳。此外, 依据国内外具有代表性的成果, 对水下滑翔机协作组网观测技术进行了概述, 并详细介绍了水下滑翔机小型低耗传感器设计与集成技术的发展应用, 阐述了水下滑翔机数据格式与协议领域的发展现状。最后, 从水下滑翔机功耗优化, 通信及智能化水平的提升等领域, 对水下滑翔机技术未来的发展趋势进行了展望。

     

  • [1] Leonard N E, Paley D A, Lekien F, et al. Collective Motion, Sensor Networks, and Ocean Sampling[J]. Proceeding of the IEEE, 2007, 95(1): 48-74.
    [2] Stommel H. The Slocum Mission[J]. Oceanography, 1989, 2(1): 22-25.
    [3] Webb D C, Simonetti P J, Jones C P. SLOCUM: an Underwater Glider Propelled by Environmental Energy[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 447-452.
    [4] Eriksen C C, Osse T J, Light R D, et al. Seaglider: a Long-Range Autonomous Underwater Vehicle for Oceanographic Research[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 424-436.
    [5] Sherman J, Davis R E, Owens W B, et al. The Autonomous Underwater Glider “Spray”[J]. Oceanic Engineering IEEE Journal of, 2001, 26(4): 437-446.
    [6] 王树新, 王延辉, 张大涛, 等. 温差能驱动的水下滑翔机设计与实验研究[J]. 海洋技术学报, 2006, 25(1): 1-5.

    Wang Shu-xin, Wang Yan-hui, Zhang Da-tao, et al. Design and Trial on an Underwater Glider Propelled by Thermal Engine[J]. Ocean Technology, 2006, 25(1): 1-5.
    [7] 王树新, 李晓平, 王延辉, 等. 水下滑翔器的运动建模与分析[J]. 海洋技术学报, 2005, 24(1): 5-9.

    Wang Shu-xin, Li Xiao-ping, Wang Yan-hui, et al. Dynamic Modeling and Analysis of Underwater Gliders[J]. Ocean Technology, 2005, 24(1): 5-9.
    [8] 秦玉峰, 张选明, 孙秀军, 等. 混合驱动水下滑翔机高效推进螺旋桨设计[J]. 海洋技术学报, 2016, 35(3): 40- 45.

    Qin Yu-feng, Zhang Xuan-ming, Sun Xiu-jun, et al. Design of a High-Efficiency Propeller for Hybrid Drive Underwater Gliders[J]. Ocean Technology, 2016, 35(3): 40-45.
    [9] Liu Y, Luan X, Song D, et al. Simulation for Path Planning of OUC-II Glider with Intelligence Algorithm [C]//Intelligent Robotics and Applications: 10th International Conference, ICIRA 2017. Wuhan: Springer, 2017: 801-812.
    [10] 陈刚, 张云海, 赵加鹏. 基于混合模型的水下滑翔机最佳升阻比特性[J]. 四川兵工学报, 2014(2): 150-152.

    Chen Gang, Zhang Yun-hai, Zhao Jia-peng. Optimum Lift-drag Ratio of the Underwater Glider Based on Mixture Models[J]. Journal of Sichuan Ordnance, 2014(2): 150-152.
    [11] 马冬梅, 马峥, 张华, 等. 水下滑翔机水动力性能分析及滑翔姿态优化研究[J]. 水动力学研究与进展, 2007, 22(6): 703-708.

    Ma Dong-mei, Ma Zheng, Zhang Hua, et al. Hydrodynamic Analysis and Optimization on the Gliding Attitude of the Underwater Glider[J]. Journal of Hydrodynamics, 22(6): 703-708.
    [12] 李宝仁, 傅晓云, 杨钢, 等. 一种喷水推进型深海滑翔机: CN203581363U[P]. 2014-5-7.
    [13] 倪园芳. 温差能驱动水下滑翔机性能的研究[D]. 上海: 上海交通大学, 2008.
    [14] Yang C, Peng S, Fan S. Performance and Stability Analysis for ZJU Glider[J]. Marine Technology Society Journal, 2014, 48(3): 88-103.
    [15] 田文龙, 宋保维, 刘郑国. 可控翼混合驱动水下滑翔机运动性能研究[J]. 西北工业大学学报, 2013, 31(1): 122-128.

    Tian Wen-long, Song Bao-wei, Liu Zheng-guo. Motion Characteristic Analysis of a Hybrid-Driven Underwater Glider with Independently Controllable Wings[J]. Journal of Northwestern Polytechnical University, 2013, 31(1): 122-128.
    [16] 杨豪, 陈济民, 初再宇. 圆碟形水下滑翔机的创新设计及应用前景[J]. 硅谷, 2015(4): 24-25.
    [17] Schofield O, Kohut J, Aragon D, et al. Slocum Gliders: Robust and ready[J]. Journal of Field Robotics, 2010, 24(6): 473-485.
    [18] Rudnick D L, Davis R E, Sherman J T. Spray Underwater Glider Operations[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(6): 1113-1122.
    [19] Rudnick D L, Davis R E, Eriksen C C, et al. Underwater Gliders for Ocean Research[J]. Marine Technology Society Journal, 2004, 38(2): 73-84.
    [20] Woithe H C, Chigirev I, Aragon D, et al. Slocum Glider Energy Measurement and Simulation Infrastructure[C]// Oceans 2010. Sydney: IEEE, 2010.
    [21] Кожемякин И В, Блинков А П, Рождественский К В, et al. Перспективные Платформы Морской Робототехнической Системы И Некоторые Варианты Их Применения[J]. Известия Южного федерального университета. Технические науки, 2016(1): 174.
    [22] Bachmayer R, Leonard N E, Graver J, et al. Underwater Gliders: Recent Developments and Future Applications [C]//International Symposium on Underwater Technology. Taipei: IEEE, 2004.
    [23] Claustre H, Beguery L, Patrice P L A. SeaExplorer Glider Breaks Two World Records Multisensor UUV Achieves Global Milestones for Endurance, Distance[J]. Sea Technology, 2014, 55(3): 19-22.
    [24] Wood S L, Mierzwa C E. State of Technology in Autonomous Underwater Gliders[J]. Marine Technology Society Journal, 2013, 47(5): 84-96.
    [25] Alvarez A, Caffaz A, Caiti A, et al. Fòlaga: A Low-cost Autonomous Underwater Vehicle Combining Glider and AUV Capabilities[J]. Ocean Engineering, 2009, 36(1): 24-38.
    [26] Ma W, Wang Y, Yang S, et al. Observation of Internal Solitary Waves Using an Underwater Glider in the Northern South China Sea[J/OL]. Journal of Coastal Research, 2018, (2018-03-27)[2018-03-28].https://doi.org/10.2112/JCOASTRES-D-17-00193.1.
    [27] 刘方. 混合驱动水下滑翔机系统设计与运动行为研究[D]. 天津: 天津大学, 2014.
    [28] Osse T J, Eriksen C C. The Deepglider: A Full Ocean Depth Glider for Oceanographic Research[C]//Oceans. Vancouver: IEEE, 2007: 1-12.
    [29] Yu J, Jin W, Tan Z, et al. Development and Experiments of the Sea-Wing7000 Underwater Glider[C]//Anchorage, AK, USA: Oceans–Anchorage, 2017.
    [30] Stephen. Autonomous Underwater Gliders[J]. InTech, 2009, 47(5): 84-96.
    [31] D’Spain G L, Jenkins S A, Zimmerman R, et al. Underwater Acoustic Measurements with the Liberdade/X-Ray Flying Wing Glider[J]. Acoustical Society of America Journal, 2005, 117(4): 2624.
    [32] Arima M, Tonai H, Yoshida K. Development of an Ocean-Going Solar-Powered Underwater Glider[C]//The Twenty-fourth International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers. Busan: International Society of Offshore and Polar Engineers, 2014: 444-448.
    [33] Hildebrand J A, D’Spain G L, Roch M A, et al. Glider-based Passive Acoustic Monitoring Techniques in the Southern California Region[R]. La Jolla: Scripps Institution of Oceanography, 2009.
    [34] 孙春亚, 宋保维, 王鹏. 翼身融合水下滑翔机外形优化设计[J]. 水下无人系统学报, 2017, 25(1): 68-75.

    Sun Chun-ya, Song Bao-wei, Wang Peng. Shape Optimization Design of Blended-Wing-Body Underwater Glider[J]. Journal of Unmanned Undersea Systems, 2017, 25(1): 68-75.
    [35] 何衍儒, 宋保维, 曹永辉. 基于Pareto最优的翼身融合水下滑翔机结构优化设计[J]. 水下无人系统学报, 2017, 25(3): 243-249.

    He Yan-ru, Song Bao-wei, Cao Yong-hui. Structure Optimization Design for Underwater Glider with Blended-Wing-Body Based on Pareto Optimal Solution[J]. Journal of Unmanned Undersea Systems, 2017, 25(3): 243-249.
    [36] Webb D C, Simonetti P J, Jones C P. SLOCUM: an Underwater Glider Propelled by Environmental Energy[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 447-452.
    [37] Lippsett L, Carlowicz M. “Green” Energy Powers Undersea Glider[EB/OL]. (2008-09-25)[2018-3-14]. http://www.whoi. edu/oceanus/feature/green-energy-powers-undersea-glider.
    [38] Jones C, Webb D, Glenn S, et al. Slocum Glider Extending the Endurance[C]//The 16th International Symposium on Unmanned Untethered Submersible Technology. Durham: IEEE, 2009.
    [39] Jones C, Allsup B, DeCollibus C. Slocum Glider: Expanding Our Understanding of the Oceans[C]//Oceans 2014. St. John’s: IEEE, 2014.
    [40] 王延辉, 王树新, 谢春刚. 基于温差能源的水下滑翔器动力学分析与设计[J]. 天津大学学报, 2007, 40(2): 133- 138.

    Wang Yan-hui, Wang Shu-xin, Xie Chun-gang. Dynamic Analysis and System Design on an Underwater Glider Propelled by Temperature Difference Energy[J]. Journal of Tianjin University, 2007, 40(2): 133-138.
    [41] 王延辉, 张宏伟, 武建国. 新型温差能驱动水下滑翔机系统设计[J]. 船舶工程, 2009, 31(3): 51-54.

    Wang Yan-hui, Zhang Hong-wei, Wu Jian-guo. Design of a New Type Underwater Glider Propelled by Temperature Difference Energy[J]. Ship Engineering, 2009, 31(3): 51-54.
    [42] Farid M M, Khudhair A M, Razack S A K, et al. A Review On Phase Change Energy Storage: Materials And Applications[J]. Energy Conversion & Management, 2004, 45(9): 1597-1615.
    [43] Sharma A, Tyagi V V, Chen C R, et al. Review on Thermal Energy Storage with Phase Change Materials and Applications[J]. Renewable & Sustainable Energy Reviews, 2009, 13(2): 318-345.
    [44] Verma P, Varun, Singal S. Review of Mathematical Mod-eling on Latent Heat Thermal Energy Storage Systems Using Phase-Change Material[J]. Renewable & Sustainable Energy Reviews, 2008, 12(4): 999-1031.
    [45] Xia Q, Chen Y, Zang Y, et al. Ocean Profiler PowerSystem Driven by Temperature Difference Energy[C]//Anchorage, AK, USA: Oceans–Anchorage, 2017.
    [46] Ma Z, Wang Y, Wang S, et al. Ocean Thermal Energy Harvesting with Phase Change Material for Underwater Glider[J]. Applied Energy, 2016, 178(C): 557-566.
    [47] Zhang H W, Wang Y H, Lian Z G. Application and Improvement of the Interlayer Thermal Engine Powered by Ocean Thermal Energy in an Underwater Glider[C]//Power and Energy Engineering Conference. Wuhan: IEEE, 2009.
    [48] Hine R, Willcox S, Hine G, et al. The Wave Glider: A Wave-Powered Autonomous Marine Vehicle[C]//Oceans 2009, MTS/IEEE Biloxi-Marine Technology for Our Fu-ture: Global and Local Challenges. Biloxi: IEEE, 2009.
    [49] 桑宏强, 李灿, 孙秀军. 波浪滑翔器纵向速度与波浪参数定量分析[J]. 水下无人系统学报, 2018, 26(1): 16-22

    Sang Hong-qiang, Li Can, Sun Xiu-jun. Quantitative Analysis on Longitudinal Velocity and Wave Parameter of Wave Glider[J]. Journal of Unmanned Undersea Systems, 2018, 26(1): 16-22
    [50] Davis R E, Eriksen C C, Jones C P. Autonomous Buoyancy-Driven Underwater Gliders[M]//The Technology and Applications of Autonomous Underwater Vehicles, chapter 3. UK: CRC Press, 2002.
    [51] ALSEAMAR. Seaexplorer[E/OL]. [2018-03-28]. https:// www.alseamar-alcen.com/products/underwater-glider/seaexplorer.
    [52] Osse T J, Eriksen C C. The Deepglider: A Full Ocean Depth Glider for Oceanographic Research[C]//Oceans 2007. Vancouver: IEEE, 2007.
    [53] Townsend N C, Shenoi R A. Feasibility Study of a New Energy Scavenging System for an Autonomous Underwater Vehicle[J]. Autonomous Robots, 2016, 40(16): 1-13.
    [54] Asakawa K, Watare K, Ohuchi H, et al. Buoyancy Engine Developed for Underwater Gliders[J]. Advanced Robotics, 2016, 30(1): 41-49.
    [55] Ma Z, Wang Y, Wang S, et al. Ocean Thermal Energy Harvesting with Phase Change Material for Underwater Glider[J]. Applied Energy, 2016, 178: 557-566.
    [56] Alvarez A. Redesigning the SLOCUM Glider for Torpedo Tube Launching[J]. IEEE Journal of Oceanic Engineering, 2010, 35(4): 984-991.
    [57] 金文明, 俞建成, 张奇峰, 等. 一种水下滑翔机用姿态调节装置: CN102050218B[P]. 2013-06-12.
    [58] Niu W D, Wang S X, Wang Y H, et al. Stability Analysis of Hybrid-driven Underwater Glider[J]. China Ocean Engineering, 2017, 31(5): 528-538.
    [59] Yang Y, Liu Y, Zhang L, et al. Influence of the Propeller on Motion Performance of HUGs[C]//Oceans 2016. Shanghai: IEEE, 2016.
    [60] Lei Z, Wang Y, Zhang L, et al. Uncertainty Behavior Research of Hybrid Underwater Glider[C]//Oceans 2016. Shanghai: IEEE, 2016.
    [61] 秦玉峰, 孙秀军, 林兴华, 等. 水下滑翔机低速螺旋桨的推进效率[J]. 解放军理工大学学报(自然科学版), 2017, 18(1): 61-67.

    Qin Yu-feng, Sun Xiu-jun, Lin Xing-hua, et al. Propulsive Efficiency of Low Rotation Propeller for Underwater Glider[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2017, 18(1): 61-67.
    [62] Wang S X, Sun X J, Wang Y H. Dynamic Modeling and Motion Simulation for A Winged Hybrid-Driven Underwater Glider[J]. China Ocean Engineering, 2011, 25(1): 97-112.
    [63] Liu F, Wang Y, Niu W, et al. Hydrodynamic Performance Analysis and Experiments of a Hybrid Underwater Glider with Different Layout of Wings[C]//Oceans 2014. Taipei: IEEE, 2014.
    [64] Guo S, Du J, Ye X, et al. Real-time Adjusting Control Method Based on Attitude Sensor Signal Feedback and Its Application in Spherical Underwater Vehicle[C]//2010 IEEE International Conference on Information and Automation (ICIS). Harbin: IEEE, 2010.
    [65] Guo S, Du J, Ye X, et al. The Computational Design of a Water Jet Propulsion Spherical Underwater Vehicle[C]// 2011 IEEE International Conference on Mechatronics and Automation. Beijing: IEEE, 2011.
    [66] Guo S, Du J, Ye X, et al. Realtime Adjusting Control Algorithm for the Spherical Underwater Robot[J]. International Journal on Information, 2010, 13(6): 2021-2029.
    [67] Yue C, Guo S, Lin X, et al. Analysis and Improvement of The Water-Jet Propulsion System of a Spherical Underwater Robot[C]/International Conference on Mechatronics and Automation. Chengdu: IEEE, 2012.
    [68] Guo S, Lin X, Tanaka K, et al. Develpoment and Control of a Vectored Water-jet-based Spherical Underwater Vehicle[C]//Information and Automation(ICIA), 2010 IEEE International Conference. Harbin: IEEE, 2012.
    [69] Lin X, Guo S, Tanaka K, et al. Development and Evaluation of a Vectored Water-Jet-Based Spherical Underwater Vehicle[J]. International Journal on Information, 2010, 13(6): 1985-1998.
    [70] Guo S, Lin X, Hata S. A Conceptual Design of Vectored Waterjet Propulsion System[C]//International Conference on Mechatronics and Automation. Changchun: IEEE, 2009.
    [71] Lin X, Guo S, Hao Y, et al. A Simplified Dynamics Modeling of a Spherical Underwater Vehicle[C]//The 2008 IEEE International Conference on Robotics and Biomimetics. Bangkok: IEEE, 2008.
    [72] Liu J, Wang Y H, Liu Y H, et al. Optimization Design for the Pressure Shell of Autonomous Underwater Glider Based on GDO Method[J]. Applied Mechanics & Materials, 2013, 312: 80-84.
    [73] 王兵振, 朱光文, 任炜, 等. 水下滑翔机耐压壳体的设计与优化[J]. 海洋技术学报, 2008, 27(2): 9-11.

    Wang Bing-zhen, Zhu Guang-wen, Ren Wei, et al. Design and Optimization of Pressure Case for Underwater Glider[J]. Ocean Technology, 2008, 27(2): 9-11.
    [74] Song D L, Chen L P, Wang Y F, et al. Optimal Structure Design and Analysis of Pressure Hull for the Underwater Glider[J]. Advanced Materials Research, 2014, 850-851: 317-321.
    [75] He Y, Song B, Dong H. Multi-Objective Optimization Design for the Multi-Bubble Pressure Cabin in BWB Underwater Glider[J]. International Journal of Naval Architecture&Ocean Engineering, 2017, 11[2018-03-28]. https: //doi.org/10.1016/j.ijnaoe.2017.08.007.
    [76] Graver J G, Leonard N E. Underwater Glider Dynamics and Control[C]//12th International Symposium on Unmanned Untethered Submersible Technology. Durham: Autonomous Undersea Systems Institute (AUSI), 2001.
    [77] Bhatta P, Leonard NE. Nonlinear Gliding Stability and Control for Vehicles with Hydrodynamic Forcing[J]. Automatica, 2008, 44(5): 1240–1250.
    [78] Graver G J. Underwater Gliders: Dynamics, Control and Design[J]. Journal of Fluids Engineering, 2005, 127(3): 523-528.
    [79] Bhatta P, Leonard N E. A Lyapunov Function for Vehicles with Lift and Drag: Stability of Gliding[C]//IEEE Conference on Decision and Control. Nassau: IEEE, 2004.
    [80] Isa K, Arshad M R. Motion Simulation for Propeller-Driven USM Underwater Glider with Controllable Wings and Rudder[C]//2nd International Conference on Instrumentation Control and Automation. Bandung: IEEE, 2011.
    [81] Isa K, Arshad M R. Dynamic Modeling and Characteristics Estimation for USM Underwater Glider[C]//Control and System Graduate Research Colloquium(ICSGRC). Shah Alam: IEEE, 2011.
    [82] Noh M M, Arshad M R, Mokhtar R M. Modeling of USM Underwater Glider(USMUG)[C]//International Conference on Electrical, Control and Computer Engineering. Pahang: IEEE, 2011.
    [83] Tian B, Yu J, Zhang A, et al. Dynamics Analysis of Wave-Driven Unmanned Surface Vehicle in Longitudinal Profile[C]//Oceans 2014. Taipei: IEEE, 2014.
    [84] Ma Z, Zhang H, Zhang N, et al. Study on Energy and Hydrodynamic Performance of the Underwater Glider[J]. Journal of Ship Mechanics, 2006, 10(3): 53-60.
    [85] 胡仞与. 水下滑翔机垂直面运动研究[D]. 上海: 上海交通大学, 2008.
    [86] 陈宇航, 高剑, 杜亮. 水下滑翔机建模与纵向运动控制[J]. 火力与指挥控制, 2012, 37(4): 141-145.

    Chen Yu-hang, Gao Jian, Du Liang. Modeling and Vertical Motion Control of Underwater Glider[J]. Fire Control & Command Control, 2012, 37(4): 141-145.
    [87] 张福斌, 汪刚, 陈宇航, 等. 水下滑翔机建模与运动PID控制[J]. 鱼雷技术, 2011, 19(2): 114-119.

    Zhang Fu-bin, Wang Gang, Chen Yu-hang, et al. Modeling and PID Control of Underwater Glider Motion[J]. Torpedo Technology, 2011, 19(2): 114-119.
    [88] Kan, L, Zhang, Y, Fan, H, et al. MATLAB-Based Simulation of Buoyancy-Driven Underwater Glider Motion[J]. Journal of Ocean University of China, 2008, 7(1): 113-118.
    [89] Mahmoudian N, Geisbert J, Woolsey C. Approximate Analytical Turning Conditions for Underwater Gliders: Implications for Motion Control and Path Planning[J]. IEEE Journal of Oceanic Engineering, 2010, 35(1): 131-143.
    [90] Mahmoudian N, Woolsey C. Underwater Glider Motion Control[C]//Decision and Control, 2008. CDC 2008. 47th IEEE Conference. Cancun: IEEE, 2008.
    [91] Zhang S, Yu J, Zhang A, et al. Steady Three Dimensional Gliding Motion of an Underwater Glider[C]//Robotics and Automation (ICRA), 2011 IEEE International Conference. Shanghai: IEEE, 2011.
    [92] 何漫丽. 水下自航行器水动力学特性数值计算与试验研究[D]. 天津: 天津大学, 2005.
    [93] 武建国. 混合驱动水下滑翔机系统设计与性能分析[D]. 天津: 天津大学, 2010.
    [94] Wang S, Sun X, Wang Y, et al. Dynamic Modeling and Motion Simulation for a Winged Hybrid-Driven Underwater Glider[J]. China Ocean Engineering, 2011, 25(1): 97-112.
    [95] Isa K, Arshad M R. Modeling and Motion Control of a Hybrid-Driven Underwater Glider[J]. Indian Journal of Geo-Marine Sciences, 2013, 42(8): 971-979.
    [96] Gao L, Li B, Gao L. Physical Modeling for the Gradual Change of Pitch Angle of Underwater Glider in Sea Trial[J/OL]. IEEE Journal of Oceanic Engineering, 2017, 11: 1-8 (2017-11-27)[2018-03-28]https://doi.10.1109/JOE.2017.2769918.
    [97] Leonard N E, Graver J G. Model-based Feedback Control of Autonomous Underwater Gliders[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 633-645.
    [98] Zhang F. Cyber-Maritime Cycle: Autonomy of Marine Robots for Ocean Sensing[J]. Foundations and Trends in Robotics, 2016, 5(1): 1-115.
    [99] Paley D, Zhang F, Leonard N E. Cooperative Control for Ocean Sampling: The Glider Coordinated Control System[J]. IEEE Transactions on Control System Technology, 2008, 16(4): 735-744.
    [100] 王延辉. 水下滑翔器动力学行为与鲁棒控制策略研究[D]. 天津: 天津大学, 2007.
    [101] Xiang X, Yu C, Lapierre L, et al. Survey on Fuzzy- Logic-Based Guidance and Control of Marine Surface Vehicles and Underwater Vehicles[J]. International Journal of Fuzzy Systems, 2018, 20(2): 572-586.
    [102] Fan S, Woolsey C A. Dynamics of Underwater Gliders in Currents[J]. Ocean Engineering, 2014, 84(84): 249-258.
    [103] 马冬梅, 马峥, 张华, 等. 水下滑翔机水动力性能分析及滑翔姿态优化研究[J]. 水动力学研究与进展, 2007, 22(6): 703-708.
    [104] Claus B, Bachmayer R, Cooney L. Analysis and Development of a Buoyancy-Pitch Based Depth Control Algorithm for a Hybrid Underwater Glider[C]//Autonomous Underwater Vehicles, 2012 IEEE/OES. Southampton: IEEE, 2012.
    [105] 杨海. 考虑输入受限的水下滑翔机前馈控制设计[J]. 中国舰船研究, 2014, 9(6): 87-91.

    Yang Hai. Feedforward Control Design for Autonomous Underwater Gliders Under Input Constraints[J]. Chinese Journal of Ship Research, 2014, 9(6): 87-91.
    [106] 白乐强, 邢建生, 唐元贵. 基于逆模型的混合驱动水下滑翔机垂直面控制[J]. 计算机测量与控制, 2015, 23(10): 3357-3360.

    Bai Le-qiang, Xing Jian-sheng, Tang Yuan-gui. Longitu-dinal Control for Hybrid-driven Underwater Glider Based on Inverse System[J]. Computer Measurement & Control, 2015, 23(10): 3357-3360.
    [107] Curtin T B, Bellingham J G, Catipovic J, et al. Autonomous Oceanographic Sampling Networks[J]. Oceanography, 1989, 6(3): 86-94.
    [108] Leonard N E, Paley D A, Lekien F, et al. Collective Motion, Sensor Networks and Ocean Sampling[J]. Proceeding of the IEEE, 2007, 95(1): 48-74.
    [109] Fiorelli E, Leonard N E, Bhatta P, et al. Multi-AUV Control and Adaptive Sampling in Monterey Bay[J]. IEEE Journal of Oceanic Engineering, 2006, 31(4): 935-948.
    [110] Paley D A, Zhang F, Leonard N E. Cooperative Control for Ocean Sampling: The Glider Coordinated Control System[J]. IEEE Transactions on Control Systems Technology, 2008, 16(4): 735-744.
    [111] Peng Z, Wang D, Wang H, et al. Distributed Coordinated Tracking of Multiple Autonomous Underwater Vehicles[J]. Nonlinear Dynamics, 2014, 78(2): 1261-1276.
    [112] Xue D Y, Wu Z L, Wang Y H, et al. Coordinate Control, Motion Optimization and Sea Experiment of a Fleet of Petrel-II Gliders[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 17.
    [113] Fratantoni D M, Haddock S H D. Introduction to the Au-tonomous Ocean Sampling Network(AOSN-II) Program[J]. Deep Sea Research Part II Topical Studies in Oceanography, 2009, 56(3-5): 61.
    [114] Grund M, Freitag L, Preisig J, et al. The PLUSNet Underwater Communications System: Acoustic Telemetry for Undersea Surveillance[C]//Oceans 2006, Boston: IEEE, 2006.
    [115] Harlan J, Terrill E, Hazard L, et al. The Integrated Ocean Observing System High-Frequency Radar Network: Status and Local, Regional, and National Applications[J]. Marine Technology Society Journal, 2010, 44(6): 122-132.
    [116] Wall C C, Lembke C, Mann D A. Shelf-scale Mapping of Sound Production by Fishes in the Eastern Gulf of Mexico, Using Autonomous Glider Technology[J]. Marine Ecology Progress, 2012, 449(449): 55-64.
    [117] Baumgartner M F, Fratantoni D M, Hurst T P, et al. Real-time Reporting of Baleen Whale Passive Acoustic Detections from Ocean Gliders[J]. Journal of the Acoustical Society of America, 2013, 134(3): 1814-1823.
    [118] Guerra L A A, Soares-Filho W, Barreira L M, et al. Brazil Offshore Underwater Acoustic Noise Monitoring Using Autonomous Marine Vehicle[C]//XII ETAS-Encontro de Tecnologia em Acústica Submarina. Rio de Janeiro: XII ETAS- Encontro de Tecnologia em Acústica Submarina. 2016, 11-8-10.
    [119] Uffelen L J V, Roth E H, Howe B M, et al. A Seaglider-Integrated Digital Monitor for Bioacoustic Sensing[J]. IEEE Journal of Oceanic Engineering, 2017, 42(4): 800-807.
    [120] Wall C C, Mann D A, Lembke C, et al. Mapping the Soundscape Off the Southeastern USA by Using Passive Acoustic Glider Technology[J]. Marine & Coastal Fisheries, 2017, 9(1): 23-37.
    [121] Liu L, Xiao L, Lan S Q, et al. Using Petrel II Glider to Analyze Underwater Noise Spectrogram in the South China Sea[J]. Acoustics Australia, 2018(2): 1-8.
    [122] Wolk F, Lueck R G, Laurent L S. Turbulence Measurements from a Glider[C]//Oceans 2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges. Biloxi: IEEE, 2009.
    [123] Rudnick D L, Johnston T M S, Sherman J T. High Fre-quency Internal Waves Near the Luzon Strait Observed by Underwater Gliders[J]. Journal of Geophysical Research Oceans, 2013, 118(2): 774-784.
    [124] Schultze L K P, Merckelbach L M, Carpenter J R. Turbu-lence and Mixing in a Shallow Shelf Sea From Underwater Gliders[J]. Journal of Geophysical Research Oceans, 2017, 122(11): 9092-9109.
    [125] Meyer D. Glider Technology for Ocean Observations: A Review[J]. Ocean Science Discussions, 2016: 1-26(2016-07-01) [2018-03-28]. https://doi.org/10.5194/os-2016-40,2016.
    [126] Smith R N, Schwager M, Smith S L, et al. Persistent Ocean Monitoring with Underwater Gliders: Adapting Sampling Resolution[J]. Journal of Field Robotics, 2011, 28(5): 714-741.
    [127] Testor P, Mortier L, Karstensen J, et al. EGO: Towards a Global Glider Infrastructure for the Benefit of Marine Research and Operational Oceanography[J]. Mercator Ocean-Coriolis Quarterly Newsletter, 2012(45):12-15.
    [128] Arima M, Ichihashi N, Ikebuchi T. Motion Characteristics of an Underwater Glider with Independently Controllable Main Wings[C]//Oceans 2008-MTS/IEEE Kobe Techno-Ocean. Kobe: IEEE, 2008: 1-7.
    [129] Arima M, Sumino W, Toyoda A, et al. 4 Feasibility Study of an Underwater Glider with Independently Controllable Main Wings(1st report): Development of an Experimental Underwater Glider[J]. Journal of the Japan Society of Naval Architects and Ocean Engineers, 2006(4): 31-37.
    [130] Angilella A J, Gandhi F, Lear M. Wing Camber Variation of an Autonomous Underwater Glider[C]//Kissimmee: Aiaa/ahs Adaptive Structures Conference, 2018.
    [131] 周骥平, 武立新, 朱兴龙. 仿生扑翼飞行器的研究现状及关键技术[J]. 机器人技术与应用, 2004(6): 12-17.
    [132] Yang Z, Wang Y, Wu Z, et al. Mechanism Design of Controllable Wings for Autonomous Underwater Gliders[C]// Oceans 2014-Taipei. Taipei: IEEE, 2014: 1-5.
    [133] 王田苗, 杨兴帮, 梁建宏. 中央鳍/对鳍推进模式的仿生自主水下机器人发展现状综述[J]. 机器人, 2013, 35 (3): 352-362.

    Wang Tian-miao, Yang Xing-bang, Liang Jian-hong. A Survey on Bionic Autonomous Underwater Vehicles Propelled by Median and/or Paired Fin Mode[J]. Robot, 2013, 35(3): 352-362.
    [134] 朱崎峰, 宋保维, 丁浩, 等. 一种仿海龟扑翼推进机构设计[J]. 机械设计, 2011, 28(5): 30-33.

    Zhu Qi-feng, Song Bao-wei, Ding Hao, et al. Design of a New Propulsion Mechanism of Imitation Turtles Flapping-Wing[J]. Journal of Machine Design, 2011, 28(5): 30-33.
    [135] Wu Z, Yu J, Yuan J, et al. Mechatronic Design and Implementation of a Novel Gliding Robotic Dolphin[C]// Robotics and Biomimetics(ROBIO), 2015 IEEE International Conference. Zhuhai: IEEE, 2015: 267-272.
    [136] Li K, Yu J, Wu Z, et al. Hydrodynamic Analysis of a Gliding Robotic Dolphin Based on Computational Fluid Dynamics[C]//Control Conference(CCC), 2016 35th Chinese. Chengdu: IEEE, 2016: 6008-6013.
    [137] Wu Z, Yu J, Yuan J, et al. Analysis and Verification of a Miniature Dolphin-like Underwater Glider[J]. Industrial Robot, 2016, 43(6): 628-635.
    [138] 马峥, 李永成, 潘定一, 等. 水下滑翔机仿生推进水动力学特性研究[C]//第十四届全国水动力学学术会议暨第二十八届全国水动力学研讨会文集(上册). 长春: 全国水动力学研讨会, 2017.
    [139] Mo, Kang Gil; ???, et al. The Fourth Industrial Revolution and Marine Technology[J]. Innovation studies, 2017, 12(2): 203-222.
    [140] 刘欣. 基于智能感知的机器人交互技术研究[D]. 广州:华南理工大学, 2016.
    [141] Ma W, Zhang X, Yin G. Design on Intelligent Perception System for lower limb rehabilitation exoskeleton robot[C]//Ubiquitous Robots and Ambient Intelligence (URAI), 2016 13th International Conference. Xi’an: IEEE, 2016: 587-592.
  • 加载中
计量
  • 文章访问数:  2264
  • HTML全文浏览量:  40
  • PDF下载量:  1788
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-28
  • 修回日期:  2018-04-30
  • 刊出日期:  2018-05-08

目录

    /

    返回文章
    返回
    服务号
    订阅号