Research Status and Development Trend of Bionic Underwater Vehicle
-
摘要: 针对现阶段以低能耗、低噪声、高推进效率、高机动性为优点的仿生型水下航行器已逐渐成为仿生领域研究热点的趋势, 介绍了仿生型水下航行器的推进方式和推进机理, 并以7种水下航行器为例介绍了其研究现状。通过对比分析, 提出了仿生型水下航行器研究存在的问题, 同时重点讨论了仿生型水下航行器推进、控制、能源动力及通信等的关键技术及应用前景。Abstract: Bionic underwater vehicle is drawing more and more attention due to its low power consumption, low noise, high propulsion efficiency, and flexible maneuver. This paper introduces the bionic underwater vehicle in respect to propulsion mode and propulsion mechanism, and introduces the current research situation of 7 kinds of bionic underwater vehicles. Comparative analysis is performed, and several problems in current researches are revealed. In addition, some key technologies and development trend of bionic underwater vehicle are discussed in terms of propulsion, control, power, communication, etc.
-
Key words:
- bionic underwater vehicle /
- propulsion mode /
- propulsion mechanism /
- key technology
-
[1] [1] 徐海军, 潘存云, 张代兵. 不同水下仿生推进器性能影响的比较[J]. 机械设计与研究, 2010, 26(1): 93-96.Xu Hai-jun, Pan Cun-yun, Zhang Dai-bing. Comparative Study on the Propulsive Performance of Underwater Bionic Thrusters with Different Transmission Methods[J]. Machine Design and Research, 2010, 26(1): 93-96. [2] 王扬威, 王振龙, 李健. 仿生机器鱼研究进展及发展趋势[J]. 机械设计与研究, 2011, 27(2): 22-25.Wang Yang-wei, Wang Zhen-long, Li Jian. Research Development and Tendency of Biomimetic Robot Fish[J]. Machine Design and Research, 2011, 27(2): 22-25. [3] 胡天江. 仿生长鳍波动适应性理论与控制方法研究[D]. 长沙: 国防科学技术大学, 2008. [4] 魏清平, 王硕, 谭民. 仿生机器鱼研究的进展与分析[J]. 系统科学与数学, 2012, 32(10): 1274-1286.Wei Qing-ping, Wang Shuo, Tan Min. Research Deve- lopment and Analysis of Biomimetic Robotic Fish[J]. Journal of Systems Science and Mathematical Sciences, 2012, 32(10): 1274-1286. [5] 王扬威, 王振龙, 李健. 微小型水下仿生机器人研究现状及发展趋势[J]. 微特电机, 2010, 38(12): 66-69.Wang Yang-wei, Wang Zhen-long, Li Jian. Current Situation and Development of Micro Underwater Biomi- metic Robot[J]. Small & Special Electrical Machines, 2010, 38(12): 66-69. [6] 张代兵. 波动鳍仿生水下推进器及其控制方法研究 [D]. 长沙: 国防科学技术大学, 2007. [7] Barrett D S , Triantafyllou M S, Yue D K P, et al. Drag Reduction in Fish-like Locomotion[J]. Journal of Fluid Mechanics, 1999, 392: 183-212. [8] 童秉纲, 王安平. 三维波动板加速运动的推进性能研究 [J]. 空气动力学学报, 1991, 9(3): 285-293.Tong Bing-gang, Wang An-ping. A Numerical Study on the Accelerated Motion of a Three-Dimensional Waving Plate[J]. Acta Aerodynamica Sinica, 1991, 9(3): 285-293. [9] Finnemore E J, Franzini J B. 流体力学及其工程应用[M]. 钱翼稷, 周玉文, 译. 北京: 机械工业出版社, 2006. [10] Westphal A, Rulkov N F, Ayers J, et al. Controlling a Lamprey-based Robot with an Electronic Nervous System[J]. Smart Structures and Systems, 2011, 8(1): 39-52. [11] Imai S, Mizoguchi H, Inagakii E. Proposition of New Control Method of Eel-like Swimming Robot for Swimming in Narrow Water Ways[C]//10th International Conference on Control, Automation, Robotics and Vision, Hanoi: IEEE, 2008: 681-684. [12] Porez M, Lebastard V, Ihspeert A J, et al. Multi-physics Model of an Electric Fish-like Robot: Numerical Aspects and Application to Obstacle Avoidance[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA: IEEE, 2011: 1903-1906. [13] Yu J, Wang M, Su Z, et al. Dynamic Modeling and Its Application for a CPG-coupled Robotic Fish[C]// 2011 IEEE International Conference on Robotics and Automation (ICRA). Shang- hai: IEEE, 2011: 159-164. [14] 刘洋. 湖泊水质检测机器鱼的研究[D]. 武汉: 华中科技大学, 2012. [15] Simons D G, Bergers M M C, Henrion S, et al. A Highly Versatile Autonomous Underwater Vehicle with Biomechanical Propulsion[C]//Oceans 2009-Europe, Bremen: IEEE, 2009: 1-6. [16] 杨少波, 韩小云, 张代兵. 一种新型的胸鳍摆动模式推进机器鱼设计与实现[J]. 机器人, 2008, 30(6): 508-515.Yang Shao-bo, Han Xiao-yun, Zhang Dai-bing. Design and Development of a New Kind of Pectoral Oscillation Propulsion Robot Fish[J]. Robot, 2008, 30(6): 508-515. [17] Shang L, Wang S, Tan M, et al. Motion Control for an Underwater Robotic Fish with Two Undulating Long- fins[C]//the 48th IEEE Conference on Decision and Control, 2009 Held Jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Shanghai: IEEE, 2009: 6478-6483. [18] Shang L, Wang S, Tan M, et al. Swimming Locomotion Modeling for Biomimetic Underwater Vehicle with Two Undulating Long-fins[J]. Robotica, 2012, 30(6): 913-923. [19] 王扬威, 王振龙, 李健. 形状记忆合金驱动仿生蝠鲼机器鱼的设计[J]. 机器人, 2010, 32(2): 256-261.Wang Yang-wei, Wang Zhen-long, Li Jian. Development of a Biomimetic Manta Ray Robot Fish Actuated by Shape Memory Alloy[J]. Robot, 2010, 32(2): 256-261 [20] 陈宏, 竺长安, 尹协振. 机械胸鳍式仿生水下机器人的动力学特性研究[J]. 机械设计, 2006, 23(10): 24-27.Chen Hong, Zhu Chang-an, Yin Xie-zhen. Study of Dynamics Property of Mechanical Pectoral Fin Typed Underwater Bio Robot[J]. Journal of Machine Design, 2006, 23(10): 24-27. [21] Sitorus P E, Nazaruddina Y Y, Leksono E, et al. Design and Implementation of Paired Pectoral Fins Locomotion of Labriform Fish Applied to a Fish Robot[J]. Journal of Bionic Engineering, 2009, 6(1): 37-45. [22] Kato N, Wicaksono B W, Suzuki Y. Development of Biology-inspired Autonomous Underwater Vehicle "BASS III" with High Maneuverability[C]//the 2000 International Symposium on Underwater Technology, Tokyo: IEEE, 2000: 84-89. [23] 郑精辉. 基于波动机理的仿生鱼探测器研究[D]. 杭州: 浙江大学, 2007. [24] Chen J, Hu T, Lin L, et al. Learning Control for Biomimetic Undulating Fins: An Experimental Study[J]. Journal of Bionic Engineering, 2010, 7(S): 191-198.
点击查看大图
计量
- 文章访问数: 1370
- HTML全文浏览量: 21
- PDF下载量: 1390
- 被引次数: 0