[1] |
Dong Y, Wu N, Qi J, et al. Predictive course control and guidance of autonomous unmanned sailboat based on efficient sampled Gaussian process[J]. Journal of Marine Science and Engineering, 2021, 9(12): 1420. doi: 10.3390/jmse9121420
|
[2] |
雷卫延, 黄海㼆, 李源鸿, 等. 船舶自动气象站真风观测试验与数据可靠性分析[J]. 海洋预报, 2019, 36(5): 47-52. doi: 10.11737/j.issn.1003-0239.2019.05.006Lei Weiyan, Huang Haiying, Li Yuanhong, et al. Ship automatic weather station true wind observation experiment and data reliability analyze[J]. Marine Forecasts, 2019, 36(5): 47-52. doi: 10.11737/j.issn.1003-0239.2019.05.006
|
[3] |
李志乾, 漆随平, 胡桐, 等. 航行船舶真风误差源分析[J]. 海洋技术学报, 2019, 38(2): 78-84.Li Zhiqian, Qi Suiping, Hu Tong, et al. Analysis on the Error Source for Ocean Ship's True Wind[J]. Journal of Ocean Technology, 2019, 38(2): 78-84.
|
[4] |
左少燕, 蔡烽, 李岩, 等. 船舶真风速风向的实时解算与分析研究[C]//中国造船工程学会船舶力学学术委员会测试技术学组2021年学术会议论文集. 昆明: 中国造船工程学会, 2021: 150-157.
|
[5] |
王大志, 郭晓艳, 慈元达, 等. 一种用于船舶真风测量标定的装置: CN110554213A[P]. 2019-12-10.
|
[6] |
周亦武, 王国锋, 赵永生. 船舶摇摆状态下风速测量误差分析与补偿研究[J]. 仪器仪表学报, 2014, 35(6): 1239-1245.Zhou Yiwu, Wang Guofeng, Zhao Yongsheng. Research on error analysis and compensation of wind speed measurement for ships under swaying motions[J]. Chinese Journal of Scientific Instrument, 2014, 35(6): 1239-1245.
|
[7] |
王国峰, 赵永生, 范云生. 风速风向测量误差补偿算法的研究[J]. 仪器仪表学报, 2013, 34(4): 786-790.Wang Guofeng, Zhao Yongsheng, Fan Yunsheng. Research on error compensation algorithm for wind speed and direction measurement[J]. Chinese Journal of Scientific Instrument, 2013, 34(4): 786-790.
|
[8] |
于永清, 范云生, 王国锋, 等. 船舶运动状态下风速风向测量补偿与数字仿真[J]. 计算机测量与控制, 2016, 24(10): 32-35.Yu Yongqing, Fan Yunsheng, Wang Guofeng, et al. Compensation and digital simulation for measurement of wind speed and direction with ships motion[J]. Computer Measurement & Control, 2016, 24(10): 32-35.
|
[9] |
郭颜萍, 胡桐, 李志乾, 等. 船舶相对风的融合算法研究[J]. 舰船科学技术, 2020, 42(5): 34-39.Guo Yanping, Hu Tong, Li Zhiqian, et al. Research on fusion algorithm of wind relative to the ship[J]. Ship Science and Technology, 2020, 42(5): 34-39.
|
[10] |
周艳青, 薛河儒, 姜新华, 等. 基于改进的卡尔曼滤波算法的气象数据融合[J]. 计算机系统应用, 2018, 27(4): 184-189.Zhou Yanqing, Xue Heru, Jiang Xinhua, et al. Meteorological data fusion based on proposed Kalman filter method[J]. Computer Systems & Applications, 2018, 27(4): 184-189.
|
[11] |
缪国平. 帆船运动的力学原理[J]. 力学与实践, 1994(1): 9-18.
|
[12] |
王倩. 无人帆船循迹航行的控制研究[D]. 上海: 上海交通大学, 2015.
|
[13] |
Andersen R A, Snyder L H, Li C S, et al. Coordinate transformations in the representation of spatial information[J]. Current opinion in neurobiology, 1993, 3(2): 171-176. doi: 10.1016/0959-4388(93)90206-E
|
[14] |
Welch G F. Kalman filter[J/OL]. Computer Vision: A Reference Guide, 2020: 1-3. https://doi.org/10.1007/978-3-030-03243-2_716-1.
|
[15] |
成春彦, 李亚安. EKF和UKF在双观测站纯方位目标跟踪中的应用[J]. 水下无人系统学报, 2023, 31(3): 388-397.Cheng Chunyan, Li Yaan. Applications of EKF and UKF algorithms in bearings-only target tracking with a double observation stations[J]. Journal of Unmanned Undersea Systems, 2023, 31(3): 388-397.
|
[16] |
Şahın H, Gürkan B, Ömürlü V E. Sensor fusion design by extended and unscented Kalman filter approaches for position and attitude estimation[C]//2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications(HORA). Ankara, Turkey: IEEE, 2022: 1-10.
|
[17] |
郭龙祥, 虞涵钧, 生雪莉, 等. 基于协同探测数据融合的水下多目标跟踪[J]. 水下无人系统学报, 2018, 26(5): 387-394.Guo Longxiang, Yu Hanjun, Sheng Xueli, et al. Underwater multi-target tracking based on collaborative detection data fusion[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 387-394.
|