
| Citation: | ZHANG Shuaijun, LIU Weidong, LI Le, LIU Jingbin, GUO Liwei, XU Jingming. ROV Motion Control Algorithm Based on RBF Neural Network Compensation[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 311-319. doi: 10.11993/j.issn.2096-3920.2023-0033 |
| [1] |
Jiang Z, Lu B, Wang, B, et al. A prototype design and sea trials of an 11 000 m autonomous and remotely-operated vehicle dream chaser[J]. Journal of Marine Science & Engineering, 2022, 10(6): 812.
|
| [2] |
Sahoo A, Dwivedy S K, Robi P S. Advancements in the field of autonomous underwater vehicle[J]. Ocean Engineering, 2019, 181(1): 145-160.
|
| [3] |
Muthugala M, Samarakoon S, Elara M R. Toward energy-efficient online complete coverage path planning of a ship hull maintenance robot based on glasius bio-inspired neural network[J]. Expert Systems with Application, 2022, 187: 115940. doi: 10.1016/j.eswa.2021.115940
|
| [4] |
Song C, Cui W. Review of underwater ship hull cleaning technologies[J]. Journal of Marine Science & Application, 2020, 19(3): 415-429.
|
| [5] |
Sveinung J O, Herman B A, Walter C, et al. Robust adaptive backstepping DP control of ROVs[J]. Control Engineering Practice, 2022, 127: 105282. doi: 10.1016/j.conengprac.2022.105282
|
| [6] |
Tran H N, Pham T N N, Choi S H. Robust depth control of a hybrid autonomous underwater vehicle with propeller torque’s effect and model uncertainty[J]. Ocean Engineering, 2021, 220: 108257. doi: 10.1016/j.oceaneng.2020.108257
|
| [7] |
Zan Y, Qiu T, Yuan L, et al. Autonomous remotely operated vehicle return control in a narrow underwater environment[J]. CAAI Transactions on Intelligent Systems, 2022, 17(4): 744-751.
|
| [8] |
Long C, Hu M, Qin X, et al. Hierarchical trajectory tracking control for ROVs subject to disturbances and parametric uncertainties[J]. Ocean Engineering, 2022, 266: 112733. doi: 10.1016/j.oceaneng.2022.112733
|
| [9] |
Zhou H, Cao J, Yao B, et al. Hierarchical NMPC-ISMC of active heave motion compensation system for TMS-ROV recovery[J]. Ocean Engineering, 2021, 239: 109834. doi: 10.1016/j.oceaneng.2021.109834
|
| [10] |
Zhu D, Zhang H, Liu C. Tracking controller based on model prediction control for remotely operated vehicle for thruster fault[J]. Journal of Marine Engineering & Technology, 2022, 27(2): 840-855.
|
| [11] |
Chen H, Tang G, Huang Y, et al. Adaptive model-parameter-free nonsingular fixed-time sliding mode control for underwater cleaning vehicle[J]. Ocean Engineering, 2022, 262: 112239. doi: 10.1016/j.oceaneng.2022.112239
|
| [12] |
Yang M, Sheng Z, Yin G, et al. A recurrent neural network based fuzzy sliding mode control for 4-DOF ROV movements[J]. Ocean Engineering, 2022, 256: 111509. doi: 10.1016/j.oceaneng.2022.111509
|
| [13] |
Li M, Yu C, Zhang X, et al. Fuzzy adaptive trajectory tracking control of work-class ROVs considering thruster dynamics[J]. Ocean Engineering, 2023, 267: 113232. doi: 10.1016/j.oceaneng.2022.113232
|
| [14] |
Lamraoui H C, Qidan Z. Path following control of fully-actuated autonomous underwater vehicle in presence of fast-varying disturbances[J]. Applied Ocean Research, 2019, 86: 40-46. doi: 10.1016/j.apor.2019.02.015
|
| [15] |
Zhang Z, Liu B, Wang L. Autonomous underwater vehicle depth control based on an improved active disturbance rejection controller[J]. International Journal of Advanced Robotic Systems, 2019, 16(6): 39-48.
|
| [16] |
Joe H, Kim M, Yu S C. Second-order sliding-mode controller for autonomous underwater vehicle in the presence of unknown disturbances[J]. Nonlinear Dyn, 2014, 78: 183-196. doi: 10.1007/s11071-014-1431-0
|
| [17] |
Munoz-Vazquez A J, Ramirez-Rodriguez H, Parra-Vega V, et al. Fractional sliding mode control of underwater ROVs subject to non-differentiable disturbances[J]. International Journal of Control Automation and Systems, 2017, 15(3): 1314-1321. doi: 10.1007/s12555-015-0210-0
|
| [18] |
Qiao L, Zhang W. Adaptive second-order fast nonsingular terminal sliding mode tracking control for fully actuated autonomous underwater vehicles[J]. Ocean Engineering, 2018, 44: 363-385.
|
| [19] |
Xu J, Wang M, Qiao L. Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles[J]. Ocean Engineering, 2015, 105: 54-63. doi: 10.1016/j.oceaneng.2015.06.022
|
| [20] |
Huang B, Yang Q. Double-loop sliding mode controller with a novel switching term for the trajectory tracking of work-class ROVs[J]. Ocean Engineering, 2019, 178: 80-94. doi: 10.1016/j.oceaneng.2019.02.043
|
| [21] |
Yan Y, Yu S. Sliding mode tracking control of autonomous underwater vehicles with the effect of quantization[J]. Ocean Engineering, 2018, 151: 322-328. doi: 10.1016/j.oceaneng.2018.01.034
|
| [22] |
Garcia-Valdovinos L G, Fonseca-Navarro F, Aizpuru-Zinkunegi J, et al. Neuro-sliding control for underwater ROV’s subject to unknown disturbances[J]. Sensors, 2019, 19: 2943. doi: 10.3390/s19132943
|
| [23] |
Ding Z, Wang H, Sun Y, et al. Adaptive prescribed performance second-order sliding mode tracking control of autonomous underwater vehicle using neural network-based disturbance observer[J]. Ocean Engineering, 2022, 260: 111939. doi: 10.1016/j.oceaneng.2022.111939
|
| [24] |
Patre B M, Londhe P S, Waghmare L M, et al. Disturbance estimator based nonsingular fast fuzzy terminal sliding mode control of an autonomous underwater vehicle[J]. Ocean Engineering, 2018, 159(1): 372-387.
|
| [25] |
Han L, Tang G, Cheng M, et al. Adaptive nonsingular fast terminal sliding mode tracking control for an underwater vehicle-manipulator system with extended state observer[J]. Journal of Marine Science & Engineering, 2021, 9(5): 501.
|
| [26] |
Shtessel Y, Taleb M, Plestan F. A novel adaptive-gain supertwisting sliding mode controller: Methodology and application[J]. Automatica, 2012, 48: 759-769. doi: 10.1016/j.automatica.2012.02.024
|
| [27] |
朱康武, 顾临怡. 作业型遥控水下运载器的多变量Backstepping鲁棒控制[J]. 控制理论与应用, 2011, 28(10): 1441-1446.
|
| [28] |
范士波. 深海作业型ROV水动力试验及运动控制技术研究 [D]. 上海: 上海交通大学, 2013.
|