• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 31 Issue 3
Jun  2023
Turn off MathJax
Article Contents
CHEN Ken, FENG Yaofei, ZONG Xiao, YI Jinbao, XIAO Yanbin, SHI Xiaofeng. Simulation of Torpedo Combustion Chamber Thermal-Fluid-Solid Coupling Heat Transfer[J]. Journal of Unmanned Undersea Systems, 2023, 31(3): 442-450. doi: 10.11993/j.issn.2096-3920.2022-0004
Citation: CHEN Ken, FENG Yaofei, ZONG Xiao, YI Jinbao, XIAO Yanbin, SHI Xiaofeng. Simulation of Torpedo Combustion Chamber Thermal-Fluid-Solid Coupling Heat Transfer[J]. Journal of Unmanned Undersea Systems, 2023, 31(3): 442-450. doi: 10.11993/j.issn.2096-3920.2022-0004

Simulation of Torpedo Combustion Chamber Thermal-Fluid-Solid Coupling Heat Transfer

doi: 10.11993/j.issn.2096-3920.2022-0004
  • Received Date: 2022-07-05
  • Accepted Date: 2022-08-10
  • Rev Recd Date: 2022-08-02
  • Available Online: 2023-05-26
  • To improve the cooling heat transfer performance of torpedo combustion chambers, a numerical simulation of the thermal-fluid-solid cooling heat transfer process in a torpedo combustion chamber was performed based on the thermal-fluid-solid coupling numerical calculation method. The flow field distribution was obtained under two types of cooling water channel structures in the combustion chamber, and the cooling heat transfer performance under these different water channel structures was analyzed. The results indicated that, with an increase in the number of the water channels at the bottom of cooling area, the turbulent intensity decreased, and size of the local overheating area reduced. With an increase in the number of outlet water channels at the bottom of the cooling area, the turbulence, vortex, and local overheating area at the outlet gradually disappeared, and the block flow at the bottom of the cooling area caused by water impact also disappeared. Furthermore, the heat transfer efficiency was improved by increasing the number of water channels, with a larger number of water channels at the bottom yielding better improvement in the heat transfer efficiency. Increasing the number of water channels in the combustion chamber raised the cooling heat transfer power about 8.5%, and the maximum temperature of the shell decreased by 11 K. The results of this study can provide a reference for the design and improvement of the cooling structure of torpedo combustion chambers.

     

  • loading
  • [1]
    石秀华, 王晓娟. 水中兵器概论(鱼雷分册)[M]. 西安: 西北工业大学出版社, 2005.
    [2]
    查志武, 史小锋. 鱼雷热动力技术[M]. 北京: 国防工业出版社, 2006.
    [3]
    赵寅生. 鱼雷涡轮机原理[M]. 西安: 西北工业大学出版社, 2001.
    [4]
    刘学, 杨海威, 周伟星. 燃烧室内壁面发汗冷却数值模拟研究[J]. 火箭推进, 2021, 47(4): 30-36. doi: 10.3969/j.issn.1672-9374.2021.04.005

    Liu Xue, Yang Haiwei, Zhou Weixing. Numerical simulation research on transpiration cooling on the inner wall of combustion chamber[J]. Journal of Rocket Propulsion, 2021, 47(4): 30-36. doi: 10.3969/j.issn.1672-9374.2021.04.005
    [5]
    Chen Z X, Swaminathan N, Mazur M, et al. Numerical investigation of azimuthal thermoacoustic instability in a gas turbine model combustor[J]. Fuel, 2023, 339: 127405.
    [6]
    Laurent G, Vincent R, Arnaud M. Lagrangian modelling of turbulent spray combustion under liquid rocket engine conditions[J]. Acta Astronautica, 2014, 94(1): 184-197.
    [7]
    Zhukov V P, Suslov D I. Measurements and modelling of wall heat fluxes in rocket combustion chamber with porous injector head[J]. Aerospace Science & Technology, 2016, 48: 67-74.
    [8]
    赵卫兵, 史小锋, 张忠义. 鱼雷燃烧室低频不稳定燃烧分析[J]. 舰船科学技术, 2003, 25(3): 12-15.

    Zhao Weibing, Shi Xiaofeng, Zhang Zhongyi. An analysis of low frequency combustion instability in torpedo combustor[J]. Ship Science and Technology, 2003, 25(3): 12-15.
    [9]
    赵卫兵, 钱志博, 何长富, 等. HAP三组元推进剂鱼雷旋转燃烧室内流场数值模拟[J]. 鱼雷技术, 2008, 16(3): 40-44.

    Zhao Weibing, Qian Zhibo, He Changfu, et al. Numerical simulation on turbulent flow in rotary combustion chamber for hap tri-propellant of thermal torpedo[J]. Torpedo Technology, 2008, 16(3): 40-44.
    [10]
    Qin K, Wang H, Wang X, et al. Thermodynamic and experimental investigation of a metal fuelled steam Rankine cycle for Unmanned Underwater Vehicles[J]. Energy Conversion and Management, 2020, 223(11): 1-10.
    [11]
    庄逢辰. 液体火箭发动机喷雾燃烧的理论、模型及应用[M]. 长沙: 国防科技大学出版社, 1995.
    [12]
    Shafrovich E, Diakov V, Varma A. Combustion of novel chemical mixtures for hydrogen generation[J]. Combustion and Flame, 2006, 144: 415-418. doi: 10.1016/j.combustflame.2005.07.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(8)

    Article Metrics

    Article Views(436) PDF Downloads(43) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return