• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
ZHENG Yi, WANG Ming-zhou. Sliding Backward Recursive EKF Bearings-Only Target Tracking Method[J]. Journal of Unmanned Undersea Systems, 2020, 28(6): 663-669. doi: 10.11993/j.issn.2096-3920.2020.06.011
Citation: ZHENG Yi, WANG Ming-zhou. Sliding Backward Recursive EKF Bearings-Only Target Tracking Method[J]. Journal of Unmanned Undersea Systems, 2020, 28(6): 663-669. doi: 10.11993/j.issn.2096-3920.2020.06.011

Sliding Backward Recursive EKF Bearings-Only Target Tracking Method

doi: 10.11993/j.issn.2096-3920.2020.06.011
  • Received Date: 2020-07-14
  • Rev Recd Date: 2020-09-27
  • Publish Date: 2020-12-31
  • In the field of target location and tracking, when only one observer is present and only the bearings of the target can be obtained, passive bearings-only underwater target tracking by a single observer is difficult. In engineering applications, the time of observation is short and the amount of data is sometimes small, which makes target location and tracking more difficult. In this study, the principle of a conventional extended Kalman filter(EKF) is studied and the characteristics of state estimation changes in bearings-only target tracking by a single observer are analyzed and proved by formula derivation. Considering the special background of short-term observation and the existence of a small amount of data, this study proposes a sliding backward recursive EKF method. Through a combination of backward and forward recursion, the data are reused and estimation errors are reduced. In a simulation of different observation noises and noise covariance estimates, results show that the proposed method generates lower errors than the conventional EKF for bearings-only target tracking by a single observer using a small amount of short-term observation data.

     

  • loading
  • [1]
    刘忠, 周丰, 石章松, 等. 纯方位目标运动分析[M]. 北京: 国防工业出版社, 2009.
    [2]
    Miller A B, Miller B M. Underwater Target Tracking Using Bearing-Only Measurements[J]. Journal of Communications Technology and Electronics, 2018, 63(6): 643-649.
    [3]
    孙仲康, 郭福成, 冯道旺, 等. 单站无源定位跟踪技术[M]. 北京: 国防工业出版社, 2008.
    [4]
    Shalom Y, Li X R, Thiagalingam K. Estimation with Applications to Tracking and Navigation[M]. New York: Wiley, 2001: 381-394.
    [5]
    Julier S J, Uhlmann J K. Unscented Filtering and Nonlinear Estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401-422.
    [6]
    Arasaratnam I, Haykin S. Cubature Kalman Filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269.
    [7]
    Gordon N J, Salmond D J, Smith A F M. Novel Approach to Nonlinear/non-Gaussian Bayesian State Estimate[J]. IEEE Proceeding of Radar, Sonar and Navigation, 1993, 140(2): 107-113.
    [8]
    Zhao J. Dynamic State Estimation with Model Uncertainties Using H∞ Extended Kalman Filter[J]. IEEE Transactions on Power Systems, 2018, 33(1): 1099-1100.
    [9]
    Li X, Zhao C, Yu J, et al. Underwater Bearing-only and Bearing-Doppler Target Tracking Based on Square Root Unscented Kalman Filter[J]. Entropy, 2019, 21(8): 740.
    [10]
    Lim J, Shin M, Hwang W. Variants of Extended Kalman Filtering Approaches for Bayesian Tracking[J]. International Journal of Robust and Nonlinear Control, 2016, 27(2): 319-346.
    [11]
    He R, Chen S X, Wu H, et al. Adaptive Covariance Feedback Cubature Kalman Filtering for Continuous-Discrete Bearings-Only Tracking System[J]. IEEE Access, 2019, 7: 2686-2694.
    [12]
    Zhou W, Liu L. Adaptive Cubature Kalman Filter Based on the Expectation-Maximization Algorithm[J]. IEEE Access, 2019, 7: 158198-158206.
    [13]
    Zhao Y, Wang T, Qin W, et al. Improved Rao-Blackwell- ised Particle Filter Based on Randomly Weighted Particle Swarm Optimization[J]. Computers and Electrical Engineering, 2018, 71: 477-484.
    [14]
    Liu H, He B, Feng C, et al. Navigation Algorithm Based on PSO-BP UKF of Autonomous Underwater Vehicle[C]// IEEE Underwater Technology(UT). Kaohsiung, Taiwan: IEEE, 2019.
    [15]
    Konatowski S, Kaniewski P, Matuszewski J. Comparison of Estimation Accuracy of EKF, UKF and PF Filters[J]. Annual of navigation, 2016, 23(1): 69-87.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(940) PDF Downloads(178) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return