Abstract:
As highly autonomous systems, unmanned surface vessels (USVs) are a reliable means of improving working efficiency on water in such areas as hydrology research, scientific exploration, hydrographic surveys, emergency search and rescue, and security patrol. Advancements in exchange information and collaborative decision-making have enabled the development of USV cluster systems. These systems can obtain more complete perception information and have a high execution efficiency and greater operating range, which considerably enhance the capabilities of USVs to complete tasks autonomously. However, because of complex and changeable marine environmental factors such as wind, waves, and sea currents, collaborative control and optimization decision-making of USV cluster systems face challenges related to single USV autonomous and complete perception mechanism, rapid and flexible interactive cognition of multiple USVs, and real-time efficient cluster collaboration. This study summarizes the latest developments of USV cluster systems in the following four respects: 1) the single USV complete autonomous perception mechanism, 2) the multiple-USV real-time interactive cognition mechanism, 3) the intelligent collaborative control decision methodology, and 4) the USV verification platform. Finally, problems that remain to be addressed as well as future research directions in the field are also briefly discussed. Single USV autonomous and complete perception, rapid and flexible interactive cognition among multiple USVs, and real-time efficient cluster collaboration are the research directions of cluster control technology.