• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
PENG Ya-xin, Huang Qi, YU Ming-hui, YANG-Jie, SU Hou-sheng. Calculation Model of SGR Based on Operational Environment Configuration Resources[J]. Journal of Unmanned Undersea Systems, 2020, 28(6): 642-649. doi: 10.11993/j.issn.2096-3920.2020.06.008
Citation: PENG Ya-xin, Huang Qi, YU Ming-hui, YANG-Jie, SU Hou-sheng. Calculation Model of SGR Based on Operational Environment Configuration Resources[J]. Journal of Unmanned Undersea Systems, 2020, 28(6): 642-649. doi: 10.11993/j.issn.2096-3920.2020.06.008

Calculation Model of SGR Based on Operational Environment Configuration Resources

doi: 10.11993/j.issn.2096-3920.2020.06.008
  • Received Date: 2020-06-01
  • Rev Recd Date: 2020-07-26
  • Publish Date: 2020-12-31
  • The sortie generation rate(SGR) of naval weapons such as aircraft carriers and unmanned surface vessels (USVs) is the key index for judging the comprehensive operational capabilities of a system, where the resource configuration will greatly affect such a system. Therefore, research on the optimal combination of configuration resource of an operational system can improve the system’s operational capabilities. Using an aircraft carrier SGR as an example and based on the sortie-by-waves model, this study develops a simulation calculation model of the SGR. To avoid the problem of having to repeat the calculation to reduce the randomness of the results, a simulation calculation model is fitted by a back-propagation(BP) neural network, and a BP-SGR calculation model of is obtained. An optimization of the deck resource configuration with the BP-SGR calculation model is also studied. Through a simulation, all of the SGR combination values of 21 groups optimal resource configurations obtained by the BP-SGR calculation model fall within a 99% prediction range of the simulation model’s SGR calculation results. In addition, all relative errors are shown to be less than 1%, thus verifying the applicability of the model to resource configuration optimization. The BP-SGR calculation model can thus be used to solve configuration problems related to aircrafts and USVs.

     

  • loading
  • [1]
    刘相春. 航空母舰舰机适配性技术体系[J]. 中国舰船研究, 2016, 11(3): 1-4.

    Liu Xiang-chun. A Technology System for the Carrier/air Vehicle Integration[J]. Chinese Journal of Ship Research, 2016, 11(3): 1-4.
    [2]
    熊勇, 余嘉俊, 张加, 等. 无人艇研究进展及发展方向[J]. 船舶工程, 2020, 42(2): 12-19.

    Xiong Yong,Yu Jia-jun, Zhang Jia, et al. Research Progress and Development Direction of Unmanned Aerial Vehicle[J]. Ship Engineering, 2020, 42(2): 12-19.
    [3]
    Stillion J, Orletsky D T. Airbase Vulnerability to Conventional Cruise-missile and Ballistic-missile Attacks: Technology, Scenarios, and U.S. Air Force Responses[M]. Santa Monica, CA: RAND Corporation, 1999: 81-84.
    [4]
    Harris J W. The Sortie Generation Rate Model[C]//The 2002 Winter Simulation Conference. San Diego, CA, USA: [s.n.], 2003: 864-868.
    [5]
    夏国清, 陈红召, 王元慧. 基于闭排队网络的飞机SGR分析[J]. 系统工程学报, 2011, 26(5): 686-693.

    Xia Guo-qing, Chen Hong-zhao, Wang Yuan-hui. Analysis of Sortie Generation Rate Based on Closed Queueing Network Model[J]. Journal of Systems Engineering, 2011, 25(5): 686-693.
    [6]
    郑茂, 黄胜, 赵永振, 等. 舰载机高峰出动仿真方法研究[J]. 武汉理工大学学报, 2013, 273(9): 61-66.

    Zheng Mao, Huan Sheng, Zhao Yong-zhen, et al. Simula-tion Research on Carrier based Aircraft Surge Operation[J]. Journal of Wuhan University of Technology, 2013, 273(9): 61-66.
    [7]
    陈成. 飞行甲板航空保障系统配置对SGR的影响研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
    [8]
    Stammer R M. A Database Approach to Aircraft Carrier Airplan Production[R]. Monterey: Naval Postgraduate School, 1992: 76.
    [9]
    尹顾, 李杰, 雷湘平. 现代美国海军[M]. 北京: 国防大学出版社, 1995: 145-184.
    [10]
    Angelyn J. Sortie Generation Capacity of Embarked Airwings, ADA359178[R]. Alexandria, VA: Center for Naval Analyses, 1998.
    [11]
    刘相春, 卢晶, 黄祥钊.国外航母舰载机出动回收能力指标体系分析[J].中国舰船研究, 2011, 6(4): 1-7.

    Liu Xiang-chun, Lu Jing, Huang Xiang-zhao. Analysis on the Index System of Sortie Generation Capacity of Embarked Aircrafts[J]. Chinese Journal of Ship Research, 2011, 6(4): 1-7.
    [12]
    林骥鹏. 基于离散事件的舰载机出动架次计算方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
    [13]
    杨放青. 航母飞行甲板作业能力分析与优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
    [14]
    陈练. 效率致胜——美国航母提高舰载机SGR新招数[J]. 现代舰船, 2008(10): 20-22.

    Chen Lian. Efficiency Wins: A New Way for American Carriers to Improve the Sortie Rate of Carrier Aircraft[J]. Modern Ships, 2008(10): 20-22.
    [15]
    刘相春. 美国“福特”级航母“一站式保障”技术特征和关键技术分析[J]. 中国舰船研究, 2013, 8(6): 1-5.

    Liu Xiang-chun. Technical Features and Critical Technologies for the “Pit-stop” Aircraft Servicing Adopted by Ford Class Aircraft Carriers[J]. Chinese Journal of Ship Research, 2013, 8(6): 1-5.
    [16]
    郜星军. 基于神经网络的股票预测模型[D]. 广西: 广西大学, 2019.
    [17]
    罗成汉. 基于MATLAB神经网络工具箱的BP网络实现[J]. 计算机仿真, 2004, 21(5): 109-111,115.

    Luo Cheng-han. Realization of BP Network Based on neural Network Tool Kit in MATLAB[J]. Computer Simulation. 2004, 21(5): 109-111,115.
    [18]
    贾俊平, 何晓群, 金勇.统计学[M]. 4版. 北京: 中国人民大学出版社, 2009.
    [19]
    李泽阳, 刘玲, 胡奕仁. 基于预测区间理论的工程造价信息数据统计测算模型[J]. 统计与决策, 2018, 34(6): 29-32.

    Li Ze-yang, Liu Ling, Hu Yi-ren. Statistical Calculation Model of Engineering Cost Information Data Based on Prediction Interval Theory[J]. Statistics & Decision, 2018, 34(6): 29-32.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(409) PDF Downloads(172) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return