• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
ZHANG Qian, ZHANG You-mei, LI Xiao-lei, SONG Ran, ZHANG Wei. Maritime Object Detection Method Based on Self-Supervised Representation Learning[J]. Journal of Unmanned Undersea Systems, 2020, 28(6): 597-603. doi: 10.11993/j.issn.2096-3920.2020.06.002
Citation: ZHANG Qian, ZHANG You-mei, LI Xiao-lei, SONG Ran, ZHANG Wei. Maritime Object Detection Method Based on Self-Supervised Representation Learning[J]. Journal of Unmanned Undersea Systems, 2020, 28(6): 597-603. doi: 10.11993/j.issn.2096-3920.2020.06.002

Maritime Object Detection Method Based on Self-Supervised Representation Learning

doi: 10.11993/j.issn.2096-3920.2020.06.002
  • Received Date: 2020-09-07
  • Rev Recd Date: 2020-11-12
  • Publish Date: 2020-12-31
  • To improve the perception and monitoring ability of marine unmanned equipment, boosting the performance of maritime object detection is critical. However, complex sea environments and limited sensors make it difficult to collect high-quality samples for a large-scale maritime dataset. This results in a dearth of large-scale sea surface target datasets, which in turn hampers the development of maritime object detection based on deep earning. To address this problem, this study introduces self-supervised representation learning into the field of maritime object detection. Specifically, a momentum-contrast based algorithm is proposed to conduct representation learning of ships, where the characteristics of ship targets are learned from large-scale unlabeled maritime data. This provides prior knowledge for subsequent maritime object detection based on Faster R-CNN. Experimental results show that with the aid of model pre-training on a large-scale unlabeled dataset in a self-supervised manner, the proposed maritime object detection method through self-supervised representation learning has a performance comparable with those that employ supervised model pre-training. The proposed method can thus overcome the limitations caused by an inadequate number of labeled maritime samples.

     

  • loading
  • [1]
    Lin T Y, Maire M, Belongie S, et al. Microsoft Coco: Common Objects in Context[C]//European Conference on Computer Vision. Zurich: ETH, 2014: 740-755.
    [2]
    Everingham M, Van G L, Williams C K I, et al. The Pascal Visual Object Classes(VOC) Challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
    [3]
    Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified, Real-time Object Detection[C]//Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
    [4]
    Liu W, Anguelov D, Erhan D, et al. Ssd: Single Shot Multibox Detector[C]//European Conference on Computer Vision. Amsterdam: Springer, Cham, 2016: 21-37.
    [5]
    Lin T Y, Goyal P, Girshick R, et al. Focal Loss for Dense Object Detection[C]//Proceedings of The IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
    [6]
    Ren S, He K, Girshick R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[C]//Advances in Neural Information Processing Systems. Montreal. Montreal: NIPS, 2015: 91-99.
    [7]
    He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]//Proceedings of The IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2961-2969.
    [8]
    Shin H C, Lee K I, Lee C E. Data Augmentation Method of Object Detection for Deep Learning in Maritime Image[C]//2020 IEEE International Conference on Big Data and Smart Computing(BigComp). Busan: IEEE, 2020: 463-466.
    [9]
    Moosbauer S, Konig D, Jakel J, et al. A Benchmark for Deep Learning Based Object Detection in Maritime Environments[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Long Beach: IEEE, 2019: 916-925.
    [10]
    Devlin J, Chang M W, Lee K, et al. Bert: Pretraining of Deep Bidirectional Transformers for Language Understanding[EB/OL]. ArXiv, (2019-05-25)[2020-09-07]. https://arxiv.org/abs/1810.04805?context=cs.
    [11]
    Wu J, Wang X, Wang W Y. Self-supervised Dialogue Learning[EB/OL]. ArXiv, (2019-06-30)[2020-09-07]. https: //arxiv.org/abs/1907.00448.
    [12]
    Song K, Zhang W, Lu W, et al. Visual Object Tracking Via Guessing and Matching[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(11): 4182-4191.
    [13]
    Li P, Chen B, Ouyang W, et al. Gradnet: Gradient-guided Network for Visual Object Tracking[C]//Proceedings of the IEEE International Conference on Computer Vision. Seoul: IEEE, 2019: 6162-6171.
    [14]
    Lan X, Zhang W, Zhang S, et al. Robust Multi-modality Anchor Graph-based Label Prediction for RGB-infrared Tracking[J]. IEEE Transactions on Industrial Informatics, 2019. DOI: 10.1109/TII.2019.2947293.
    [15]
    Kingma D P, Welling M. Auto-encoding Variational Bayes[EB/OL]. ArXiv, (2014-05-01)[2020-09-07]. https:// arxiv.org/abs/1312.6114.
    [16]
    Burda Y, Grosse R, Salakhutdinov R. Importance Weighted Autoencoders[EB/OL]. ArXiv, (2015-11-07)[2020-09-07].https://www.arxiv-vanity.com/papers/1509.00519/.
    [17]
    Maal? L, Fraccaro M, Liévin V, et al. Biva: A Very Deep Hierarchy of Latent Variables for Generative Modeling[C]//Advances in Neural Information Processing Systems. Vancouver: NIPS, 2019: 6551-6562.
    [18]
    He K, Fan H, Wu Y, et al. Momentum Contrast for UnsuperVised Visual Representation Learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Virtual: IEEE, 2020: 9729-9738.
    [19]
    Chen T, Kornblith S, Norouzi M, et al. A Simple Framework for Contrastive Learning of Visual Representations[EB/OL]. ArXiv, (2020-07-01)[2020-09-07]. https:// arxiv.org/abs/2002.05709.
    [20]
    Deng J, Dong W, Socher R, et al. Imagenet: A Large-scale Hierarchical Image Database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 248-255.
    [21]
    Gundogdu E, Solmaz B, Yücesoy V, et al. MARVEL: A Large-scale Image Dataset for Maritime Vessels[C]//Asian Conference on Computer Vision. Taipei: AFCV, 2016: 165-180.
    [22]
    Prasad D K, Rajan D, Rachmawati L, et al. Video Processing from Electro-optical Sensors for Object Detection and Tracking in a Maritime Environment: a Survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(8): 1993-2016.
    [23]
    Zhang Y, Li Q Z, Zang F N. Ship Detection for Visual Maritime Surveillance from Non-stationary Platforms[J]. Ocean Engineering, 2017, 141: 53-63.
    [24]
    Lin T Y, Dollár P, Girshick R, et al. Feature Pyramid Networks for Object Detection[C]//Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2117-2125.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(637) PDF Downloads(366) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return