• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
CAO Meng, LI Jian-chen, GUO Lin-na, HUANG Hai, HONG Jian-ying. Application of Adaptive Federated Kalman Filter Algorithm to Multi-parameter Estimation for Torpedo Navigation and Positioning[J]. Journal of Unmanned Undersea Systems, 2014, 22(6): 420-424. doi: 10.11993/j.issn.1673-1948.2014.06.003
Citation: CAO Meng, LI Jian-chen, GUO Lin-na, HUANG Hai, HONG Jian-ying. Application of Adaptive Federated Kalman Filter Algorithm to Multi-parameter Estimation for Torpedo Navigation and Positioning[J]. Journal of Unmanned Undersea Systems, 2014, 22(6): 420-424. doi: 10.11993/j.issn.1673-1948.2014.06.003

Application of Adaptive Federated Kalman Filter Algorithm to Multi-parameter Estimation for Torpedo Navigation and Positioning

doi: 10.11993/j.issn.1673-1948.2014.06.003
  • Received Date: 2014-05-11
  • Rev Recd Date: 2014-07-22
  • Publish Date: 2014-12-20
  • Considering the particularity of torpedo underwater navigation, a new adaptive Kalman filter algorithm for torpedo multi-parameter estimation is presented for the purpose of torpedo navigation and positioning. Hence, the low filtering precision due to the uncertainty of the measurement noise′s statistical characteristics of Kalman filter in inte-grated navigation can be improved. This algorithm can conduct filtering calculation via measurement noise′s adaptive information with unknown statistical characteristics of noise. Moreover, a new adaptive information distribution strategy for information fusion is proposed. This distribution strategy can determine the information distribution coefficient of each sub-filter by making use of the estimated mean square error matrix, and make the variation of the coefficient de-pend on the optimal performance of the sub-filter at any time. Comparison between the simulations of the proposed al-gorithm and the normal Kalman filter algorithm verifies the effectiveness of the proposed algorithm.

     

  • loading
  • [1]
    李建辰. 鱼雷定位技术[M]. 北京: 国防工业出版社, 2009.
    [2]
    鲁平, 赵龙, 陈哲. 改进的 Sage-Husa 自适应滤波及其应用[J]. 系统仿真学报, 2007, 19(15): 3503-3505.

    Lu Ping, Zhao Long, Chen Zhe. Improved Sage-Husa Adaptive Filtering and Its Application[J]. Journal of Sys-tem Simulation, 2007, 19(15): 3503-3505.
    [3]
    李旦, 秦永元, 梅春波. 组合导航自适应卡尔曼滤波改进算法研究[J]. 测控技术, 2011, 30(3): 114-116.

    Li Dan, Qin Yong-yuan, Mei Chun-bo. An Improved Adaptive Kalman Filter Algorithm for SINS/GPS Integra- ted Navigation System[J]. Measurement & Control Tech- nology, 2011, 30(3): 114-116.
    [4]
    卞鸿巍, 金志华, 王俊璞, 等. 组合导航系统信息自适应卡尔曼滤波算法[J]. 上海交通大学学报, 2006, 40(6): 1000-1004.

    Bian Hong-wei, Jin Zhi-hua, Wang Jun-pu, et al. The In-novation-Based Estimation Adaptive Kalman Filter Algo- rithm for INS/GPS Integrated Navigation System[J]. Jour- nal of Shang hai Jiaotong University, 2006, 40(6): 1000- 1004.
    [5]
    刘勇, 徐世杰. 基于联邦UKF算法的月球探测自主组合导航[J]. 宇航学报, 2006, 27(3): 518-530.

    Liu Yong, Xu Shi-jie. Autonomous Integrated Navigation for Lunar Probe Based on Federated UKF Algorithm[J]. Journal of Astronautics, 2006, 27(3): 518-530.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1424) PDF Downloads(507) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return