• 中国科技核心期刊
  • JST收录期刊
Volume 32 Issue 1
Feb  2024
Turn off MathJax
Article Contents
FAN Xinyu, MENG Hao. Method for Maximum Power Control of Direct-drive Wave Power Device Based on Fuzzy Sliding Mode Control[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 48-56. doi: 10.11993/j.issn.2096-3920.2023-0114
Citation: FAN Xinyu, MENG Hao. Method for Maximum Power Control of Direct-drive Wave Power Device Based on Fuzzy Sliding Mode Control[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 48-56. doi: 10.11993/j.issn.2096-3920.2023-0114

Method for Maximum Power Control of Direct-drive Wave Power Device Based on Fuzzy Sliding Mode Control

doi: 10.11993/j.issn.2096-3920.2023-0114
  • Received Date: 2023-10-03
  • Accepted Date: 2023-12-13
  • Rev Recd Date: 2023-11-23
  • Available Online: 2024-01-15
  • Marine wave energy is a new type of clean energy. In order to improve the generation power and wave energy conversion efficiency of the direct-drive wave power generation system, a maximum power control method based on fuzzy sliding mode control was proposed. The method aimed at solving the problems of large output ripple and poor system stability of the commonly used proportional-integral-derivative(PID) control method. In addition, the reaching law parameters were adjusted in real time according to the running state. At the same time, while realizing maximum power tracking, the output ripple was weakened; the tracking error was reduced, and the control quality of the system was improved. In this paper, the permanent magnet linear generator was used as the power generation device, and a system dynamics model was established. The main frequency of irregular waves was estimated by fast Fourier transform (FFT), and the expected current tracking curve was designed to meet the maximum power strategy. On this basis, the conventional PID and sliding mode control methods were compared with the proposed fuzzy sliding mode maximum power control method. The results show that the fuzzy sliding mode control method has improved power and shown better accuracy and stability.

     

  • loading
  • [1]
    洪岳, 潘剑飞, 刘云, 等. 直驱波浪能发电系统综述[J]. 中国电机工程学报, 2019, 39(7): 1886-1899.

    Hong Yue, Pan Jianfei, Liu Yun, et al. A review on linear generator based wave energy conversion systems[J]. Proceedings of the CSEE, 2019, 39(7): 1886-1899.
    [2]
    刘翔宇, 王岩, 王昊, 等. 基于柔性摩擦纳米发电机的水下能量收集技术研究[J]. 水下无人系统学报, 2022, 30(5): 543-549. doi: 10.11993/j.issn.2096-3920.202112016

    Liu Xiangyu, Wang Yan, Wang Hao, et al. Research on flexible triboelectric nanogenerator for underwater energy harvesting[J]. Journal of Unmanned Undersea Systems, 2022, 30(5): 543-549. doi: 10.11993/j.issn.2096-3920.202112016
    [3]
    曲泉铀, 何宏舟, 李晖. 一种浮摆式波能发电装置摆板运动响应的数值模拟[J]. 海洋工程, 2013, 31(5): 82-88. doi: 10.3969/j.issn.1005-9865.2013.05.011

    Qu Quanyu, He Hongzhou, Li Hui. Numerical simulation of the pendulum system in a floating & pendular type wave energy converter[J]. Ocean Engineering, 2013, 31(5): 82-88. doi: 10.3969/j.issn.1005-9865.2013.05.011
    [4]
    方子帆, 葛旭甫, 何孔德, 等. 无人水下航行器摆式发电装置设计与研究[J]. 中国机械工程, 2018, 29(19): 2306-2311. doi: 10.3969/j.issn.1004-132X.2018.19.006

    Fang Zifan, Ge Xufu, He Kongde, et al. Design and research on pendulum power generation devices for UUVs[J]. China Mechanical Engineering, 2018, 29(19): 2306-2311. doi: 10.3969/j.issn.1004-132X.2018.19.006
    [5]
    Krishna R, Svensson O, Rahm M, et al. Analysis of linear wave power generator model with real sea experimental results[J]. IET Renewable Power Generation, 2013, 7(5): 574-581. doi: 10.1049/iet-rpg.2012.0117
    [6]
    肖晓龙, 肖龙飞, 杨立军. 串联直驱浮子式波浪能发电装置能量捕获研究[J]. 太阳能学报, 2018, 39(2): 398-405.

    Xiao Xiaolong, Xiao Longfei, Yang Lijun. Energy harvesting study of series direct driven float wave energy converter[J]. Acta Solar Energy Sinica, 2018, 39(2): 398-405.
    [7]
    Hai L, Malin G, Leijon M. A methodology of modelling a wave power system via an equivalent RLC circuit[J]. IEEE Transactions on Sustainable Energy, 2016, 7(4): 1362-1370. doi: 10.1109/TSTE.2016.2538803
    [8]
    黄宝洲, 杨俊华, 沈辉, 等. 基于FFT的直驱式波浪发电系统功率优化控制[J]. 太阳能学报, 2019, 42(3): 206-213.

    Huang Baozhou, Yang Junhua, Shen Hui, et al. Power optimization control of direct drive wave power system based on FFT[J]. Acta Solar Sinica, 2019, 42(3): 206-213.
    [9]
    杨健, 黄磊, 仲伟波, 等. 直驱式波浪发电系统能量跟踪控制[J]. 电工技术学报, 2017, 32(1): 22-29.

    Yang Jian, Huang Lei, Zhong Weibo, et al. The energy tracking control strategy for direct drive wave energy generation[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 22-29.
    [10]
    林巧梅, 杨俊华, 蔡浩然, 等. 基于滑模控制的直驱式波浪发电系统MPPT控制策略[J]. 电测与仪表, 2018, 55(10): 90-95. doi: 10.3969/j.issn.1001-1390.2018.10.015

    Lin Qiaomei, Yang Junhua, Cai Haoran, et al. MPPT algorithm for direct-drive wave power generation system based on sliding mode control[J]. Electrical Measurement & Instrumentation, 2018, 55(10): 90-95. doi: 10.3969/j.issn.1001-1390.2018.10.015
    [11]
    Yang J, Huang L, Hu M. Modeling and control strategy based on energy tracking for direct drive wave energy conversion[C]//International Conference on Electrical Machines & Systems. Chiba, Japan: IEEE, 2017.
    [12]
    张明镛, 杨绍辉, 何宏舟, 等. 阵列筏式波浪能发电装置建模与仿真分析[J]. 海洋工程, 2017, 35(2): 83-88.

    Zhang Mingyong, Yang Shaohui, He Hongzhou, et al. Modeling and simulation analysis of array-raft-type wave power generation device[J]. Ocean Engineering, 2017, 35(2): 83-88.
    [13]
    杨壮滔, 张涛, 段浩, 等. 波浪作用下圆柱型浮标运动仿真方法对比研究[J]. 水下无人系统学报, 2018, 26(4): 291-297.

    Yang Zhuangtao, Zhang Tao, Duan Hao, et al. Comparative study on motion simulation methods of cylindrical buoys under wave action[J]. Journal of Unmanned Undersea Systems, 2018, 26(4): 291-297.
    [14]
    Fan X Y, Wang C K, Zhu Z B, et al. Design and analysis of a high power density permanent magnet linear generator for direct-drive wave power generation[J]. Actuators, 2022, 11(11): 327. doi: 10.3390/act11110327
    [15]
    戴磊, 李洋洋, 尤钱亮, 等. 基于LMI算法的永磁同步电机混沌最优控制[J]. 水下无人系统学报, 2021, 29(3): 293-298.

    Dai Lei, Li Yangyang, You Qianliang, et al. Optimal control of chaos in permanent magnet synchronous motor based on LMI algorithm[J]. Journal of Unmanned Undersea Systems, 2021, 29(3): 293-298.
    [16]
    赵希梅, 王超, 金鸿雁. 基于NDO的永磁同步电动机自适应分数阶滑模控制[J]. 中国机械工程, 2023, 34(9): 1093-1099. doi: 10.3969/j.issn.1004-132X.2023.09.010

    Zhao Ximei, Wang Chao, Jin Hongyan. Adaptive fractiona order sliding mode control for PMSMs based on NDO[J]. China Mechanical Engineering, 2023, 34(9): 1093-1099. doi: 10.3969/j.issn.1004-132X.2023.09.010
    [17]
    Mendonca H, Martinez S. A resistance emulation approach to optimize the wave energy harvesting for a direct drive point absorber[J]. IEEE Transactions on Sustainable Energy, 2015, 7(1): 3-11.
    [18]
    杨绍辉, 何宏舟, 李晖, 等. 点吸收式波浪能发电技术的研究现状与展望[J]. 海洋技术学报, 2016, 35(3): 8-16.

    Yang Shaohui, He Hongzhou, Li Hui, et al. Research status and prospect of point absorption wave power generation technology[J]. Journal of Marine Technology, 2016, 35(3): 8-16.
    [19]
    康庆, 肖曦, 聂赞相, 等. 直驱型海浪发电系统输出功率优化控制策略[J]. 电力系统自动化, 2013, 37(3): 24-29. doi: 10.7500/AEPS201208227

    Kang Qing, Xiao Xi, Nie Zanxiang, et al. An optimal control strategy for output power of the directly driven wave power generation system[J]. Power System Automation, 2013, 37(3): 24-29. doi: 10.7500/AEPS201208227
    [20]
    黄俊豪, 杨俊华, 蔡浩然, 等. 基于WFT的直驱式波浪能发电系统自抗扰功率优化控制[J]. 可再生能源, 2021, 39(9): 1271-1278. doi: 10.3969/j.issn.1671-5292.2021.09.019

    Huang Junhao, Yang Junhua, Cai Haoran, et al. Optimal power control of active disturbance reiection for direct crive wave power generation svstem based on WFT[J]. Journal of Renewable Energy, 2021, 39(9): 1271-1278. doi: 10.3969/j.issn.1671-5292.2021.09.019
    [21]
    张育增, 周睿智, 李帅. 永磁同步直线电机模糊滑模速度控制研究[J]. 电气技术, 2020, 21(12): 23-29. doi: 10.3969/j.issn.1673-3800.2020.12.008

    Zhang Yuzeng, Zhou Ruizhi, Li Shuai. The research of fuzzy sliding mode velocity control of PMLSM[J]. Electrical Technology, 2020, 21(12): 23-29. doi: 10.3969/j.issn.1673-3800.2020.12.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(2)

    Article Metrics

    Article Views(657) PDF Downloads(13) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return