• 中国科技核心期刊
  • JST收录期刊
Volume 32 Issue 1
Feb  2024
Turn off MathJax
Article Contents
AO Qiyuan, LU Xi, JIANG Zhiya, KANG Poge. Numerical Simulation Accuracy Study of Underwater Explosion Shock Waves[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 158-165. doi: 10.11993/j.issn.2096-3920.2023-0098
Citation: AO Qiyuan, LU Xi, JIANG Zhiya, KANG Poge. Numerical Simulation Accuracy Study of Underwater Explosion Shock Waves[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 158-165. doi: 10.11993/j.issn.2096-3920.2023-0098

Numerical Simulation Accuracy Study of Underwater Explosion Shock Waves

doi: 10.11993/j.issn.2096-3920.2023-0098
  • Received Date: 2023-08-18
  • Accepted Date: 2023-09-18
  • Rev Recd Date: 2023-09-10
  • Available Online: 2024-01-18
  • In the numerical simulation study of the underwater explosion, the grid size and the artificial viscosity coefficient of the primary term have a large impact on the calculation results of the peak pressure of the shock wave. Under the condition of predetermined calculation accuracy, it is of great significance to quickly determine the grid size and artificial viscosity for numerical calculation. For this reason, based on LS-DYNA finite element software, a two-dimensional underwater explosion numerical calculation model of 78 g trinitrotoluene (TNT) was established to analyze the influence of the grid size and the viscosity coefficient of the primary term on the peak pressure of the underwater explosion shock wave and the overall calculation error. The results show that with the increase in the grid density factor, the sensitivity of calculated peak pressure to the grid decreases. When the grid density is larger, a small primary term coefficient will cause the relative error between the calculated peak pressure and the empirical formula value to increase. On this basis, the relationship among the error, grid size, and viscosity coefficient within 20% is obtained, and an error prediction model that can be used to quickly determine the grid size and the artificial viscosity coefficient of the primary term is constructed. Through the underwater explosion calculation of cylindrical TNT charge (aspect ratio of 1) and spherical TNTcharge in the range of 0.2–5 000 kg, the universality of the prediction model is verified, which can provide a reference for the numerical simulation of underwater explosion shock wave in the two-dimensional near-field range.

     

  • loading
  • [1]
    蔡尚. 水下爆炸作用下舰船毁伤效能评估及水雷布阵策略优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
    [2]
    田影. 不同边界条件下近场水下爆炸载荷特性研究[D]. 大连: 大连理工大学, 2022.
    [3]
    辛春亮, 秦健, 刘科种, 等. 基于LS-DYNA软件的水下爆炸数值模拟研究[J]. 弹箭与制导学报, 2008, 28(3): 156-158.

    Xin Chunliang, Qin Jian, Liu Kezhong, et al. Research on UNDEX numerical simulation based on LS-DYNA[J]. Journal of Projectiles Rockets Missiles and Guidance, 2008, 28(3): 156-158.
    [4]
    Huang H, Jiao J Q, Nie X J, et al. Numerical modeling of underwater explosion by one-dimensional ANSYS-AUTODYN[J]. Journal of Energetic Materials, 2011, 29(4): 292-325. doi: 10.1080/07370652.2010.527898
    [5]
    Wang G, Wang Y, Lu W, et al. On the determination of the mesh size for numerical simulations of shock wave propagation in near field underwater explosion[J]. Applied Ocean Research, 2016, 59: 1-9. doi: 10.1016/j.apor.2016.05.011
    [6]
    胡亮亮, 黄瑞源, 李世超, 等. 水下爆炸冲击波数值仿真研究[J]. 高压物理学报, 2020, 34(1): 102-114.

    Hu Liangliang, Huang Ruiyuan, Li Shichao, et al. Shock wave simulation of underwater explosion[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 102-114.
    [7]
    张社荣, 李宏璧, 王高辉, 等. 水下爆炸冲击波数值模拟的网格尺寸确定方法[J]. 振动与冲击, 2015, 34(8): 93-100.

    Zhang Sherong, Li Hongbi, Wang Gaohui, et al. A method to determine mesh size in numerical simulation of shock wave of underwater explosion[J]. Journal of Vibration and Shock, 2015, 34(8): 93-100.
    [8]
    杨坤, 陈朗, 伍俊英, 等. 计算网格与人工粘性系数对炸药水中爆炸数值模拟计算的影响分析[J]. 兵工学报, 2014, 35(S2): 237-243.

    Yang Kun, Chen Lang, Wu Junying, et al. The effects of computing grid and artificial viscosity coefficient on underwater explosion numerical simulation[J]. Acta Armamentarii, 2014, 35(S2): 237-243.
    [9]
    闫秋实, 常松. 水下爆炸三维数值模拟特征参量敏感性分析[J]. 北京工业大学学报, 2023, 49(10): 1099-1108.

    Yan Qiushi, Chang Song. Underwater explosion 3D numerical simulation characteristic parameter sensitivity analysis[J]. Journal of Beijing University of Technology, 2023, 49(10): 1099-1108.
    [10]
    马腾, 王金相, 刘亮涛, 等. 不同长径比柱形装药水下爆炸冲击波演化规律[J]. 振动与冲击, 2022, 41(8): 149-157, 222.

    Ma Teng, Wang Jinxiang, Liu Liangtao, et al. Shock wave evolution of cylindrical charge with different slender ratios[J]. Journal of Vibration and Shock, 2022, 41(8): 149-157, 222.
    [11]
    孟龙, 黄瑞源, 王金相, 等. 小当量梯恩梯水下爆炸气泡脉动的数值模拟[J]. 兵工学报, 2020, 41(S1): 64-71.

    Meng Long, Huang Ruiyuan, Wang Jinxiang, et al. Numerical simulation of bubble pulsation of small scaled TNT in underwater explosion[J]. Acta Armamentarii, 2020, 41(S1): 64-71.
    [12]
    Huang C, Liu M, Wang B, et al. Underwater explosion of slender explosives: Directional effects of shockwaves and structure responses[J]. International Journal of Impact Engineering, 2019, 130(8): 266-280.
    [13]
    Wang J, Yang L, Xu Z, et al. Numerical simulation on underwater explosion in small-sized containers[J]. Mathematical Modelling of Engineering Problems, 2016, 3(3): 151-156. doi: 10.18280/mmep.030307
    [14]
    高源. 炸药深水爆炸载荷研究[D]. 北京: 北京理工大学, 2021.
    [15]
    辛春亮. 有限元分析常用材料参数手册[M]. 北京: 机械工业出版社, 2022.
    [16]
    Cole R H. Underwater explosions[M]. New York: Dover Publications, 1965.
    [17]
    Zamyshlyaev B V, Yakovlev Y S. Dynamic loads in underwater explosion[R]. Washington, D. C: Naval Intelligence Support Center, 1973.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(8)

    Article Metrics

    Article Views(47) PDF Downloads(7) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return