• 中国科技核心期刊
  • JST收录期刊
Volume 32 Issue 1
Feb  2024
Turn off MathJax
Article Contents
CHENG Shunzhao, WANG Jun, LIANG Xiaofeng, WANG Jian. Quantitative Analysis of Uncertainty at the End of the Towed Cable in Underwater Towing Systems[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 105-113. doi: 10.11993/j.issn.2096-3920.2023-0085
Citation: CHENG Shunzhao, WANG Jun, LIANG Xiaofeng, WANG Jian. Quantitative Analysis of Uncertainty at the End of the Towed Cable in Underwater Towing Systems[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 105-113. doi: 10.11993/j.issn.2096-3920.2023-0085

Quantitative Analysis of Uncertainty at the End of the Towed Cable in Underwater Towing Systems

doi: 10.11993/j.issn.2096-3920.2023-0085
  • Received Date: 2023-07-10
  • Accepted Date: 2023-10-10
  • Rev Recd Date: 2023-08-28
  • Available Online: 2024-01-29
  • In the ever-changing marine environment, the key to the optimal design of the towed cable and the precise control of the towed body in the underwater towing system is the quantification of uncertainty at the end of the towed cable. The Monte Carlo(MC) method, a traditional uncertainty quantification method, has high computation costs and low accuracy. In view of this, a method of uncertainty quantization at the end of a towed cable based on polynomial chaos(PC) was proposed. Latin hypercube sampling was used to obtain sample sets of the towed cable parameters, and the sample sets were substituted into the lumped-mass method model to obtain the coordinate of the end position of the towed cable. A proxy model of the end response of the towed cable was generated by the PC method, and the uncertainty of the end was quantified according to the characteristics of the orthogonal polynomials. At the same time, the results of the PC method were compared with those of the MC method. The results show that compared with the MC method, the PC method has a faster convergence speed in terms of sample size and higher accuracy. The uncertainty of motion response is approximately proportional to the axial length of the towed cable; the increase in cable length leads to the increase in uncertainty at the end, and the increasing trend is gradually flattened. When the uncertainty of the towed cable parameters is constant, increasing the speed of the mother ship helps to improve the stability of the towed body at height. The accuracy and efficiency of the PC method have been verified. Meanwhile, the quantitative analysis results of the uncertainty at the end of the towed cable guide engineering problems.

     

  • loading
  • [1]
    吴静波, 程淑萍, 赵鹏铎. 基于长基线和超短基线联合的拖曳目标定位技术[J]. 中国舰船研究, 2019, 14(1): 156-161.

    Wu Jingbo, Cheng Shuping, Zhao Pengduo. Towed target positioning technology based on long baseline and ultra-short baseline combination[J]. Chinese Journal of Ship Research, 2019, 14(1): 156-161.
    [2]
    王飞, 丁伟, 邓德衡, 等. 水下多缆多体拖曳系统运动建模与模拟计算[J]. 上海交通大学学报, 2020, 54(5): 441-450.

    Wang Fei, Ding Wei, Deng Deheng, et al. Motion modeling and numerical simulation study of multi-cable multi-body towed system[J]. Journal of Shanghai Jiao Tong University, 2020, 54(5): 441-450.
    [3]
    张丹, 梁建通, 宋海升, 等. 水下拖曳系统临界运动特性快速确定方法[J]. 水下无人系统学报, 2022, 30(2): 165-169.

    Zhang Dan, Liang Jiantong, Song Haisheng, et al. Rapid determination method of critical motion condition of underwater towing systems[J]. Journal of Unmanned Undersee Systems, 2022, 30(2): 165-169.
    [4]
    陈家瑞, 申和平, 张咏鸥, 等. 水下拖曳系统姿态建模与快速预报[J/OL]. 武汉理工大学学报(交通科学与工程版): 1-8. [2024-01-24]. http://kns.cnki.net/kcms/detail/42.1824.U.20230227.1915.006.html.

    Chen Jiarui, Shen Heping, Zhang Yongou, et al. Attitude modeling and rapid prediction of underwater towed system[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering Edition): 1-8. [2024-01-24]. http://kns.cnki.net/kcms/detail/42.1824.U.20230227.1915.006.html.
    [5]
    侯二虎, 杜敏, 汪小勇, 等. 水下拖曳航行器水动力和拖缆姿态仿真分析[J]. 海洋开发与管理, 2020, 37(2): 74-77.

    Hou Erhu, Du Min, Wang Xiaoyong, et al. Simulation analysis of hydrodynamics of underwater towing aircraft and the attitude of towed cable[J]. Ocean Development and Management, 2020, 37(2): 74-77.
    [6]
    刘铭, 李家旺, 朱克强. 基于集中质量法的水下拖曳缆索动力响应分析[J]. 水道港口, 2017, 38(4): 405-411.

    Liu Ming, Li Jiawang, Zhu Keqiang. Dynamic response analysis of the undersea towed cable based on lump-mass method[J]. Journal of Waterway and Harbor, 2017, 38(4): 405-411.
    [7]
    孙小帅, 马骋, 钱正芳, 等. 波浪中水面船舶与拖曳系统耦合运动特性计算方法研究[J]. 中国造船, 2022, 63(5): 71-81.

    Sun Xiaoshuai, Ma Cheng, Qian Zhengfang, et al. Numerical research on couped motions of surface vessel and towing system in waves[J]. Shipbuilding of China, 2022, 63(5): 71-81.
    [8]
    朱艳杰, 朱克强, 杨冰卡, 等. 基于凝集质量法的海洋缆索动力学建模与仿真技术[J]. 海洋工程, 2014, 32(1): 112-116.

    Zhu Yanjie, Zhu Keqiang, Yang Bingka, et al. Dynamics modeling and evaluation technique of the marine cable considering tension and compression bending torsion deformation[J]. The Ocean Engineering, 2014, 32(1): 112-116.
    [9]
    王飞. 各向异性弯矩扭矩作用下导流缆运动建模与仿真[J]. 哈尔滨工程大学学报, 2013, 34(5): 549-554, 561.

    Wang Fei. Modeling and simulation of faired cable with anisotropic bending moment and torque[J]. Journal of Harbin Engineering University, 2013, 34(5): 549-554, 561.
    [10]
    胡军, 张树道. 基于多项式混沌的全局敏感度分析[J]. 计算物理, 2016, 33(1): 1-14.

    Hu Jun, Zhang Shudao. Global sensitivity analysis based on polynomial chaos[J]. Chinese Journal of Computational Physics, 2016, 33(1): 1-14.
    [11]
    方开翔, 刘炳霞, 赵琦. 拖缆涡激振动计算及分析[J]. 江苏科技大学学报(自然科学版), 2005, 19(6): 70-74.

    Fang Kaixiang, Liu Bingxia, Zhao Qi. Calculation and research of vortex induced vibration in towed array sonar[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2005, 19(6): 70-74.
    [12]
    邵校, 刘祚秋. 基于非线性有限元法的二维水下拖缆研究[J]. 船舶标准化工程师, 2015, 48(2): 63-68.

    Shao Xiao, Liu Zuoqiu. Research of two dimensional underwater towed cable based on nonlinear finite element[J]. Ship Standardization Engineer, 2015, 48(2): 63-68.
    [13]
    孙洪波, 施朝健, 林文锦. 船-缆拖曳系统操纵性能分析[J]. 船舶力学, 2015, 19(11): 1325-1333.

    Sun Hongbo, Shi Chaojian, Lin Wenjin. Analysis of maneuverability of towing cable ship system[J]. Journal of Ship Mechanics, 2015, 19(11): 1325-1333.
    [14]
    邓卫华, 向晗, 冯大奎, 等. 考虑气液两相的拖曳系统收放缆分析[J]. 中国造船, 2022, 63(3): 249-258.

    Deng Weihua, Xiang Han, Feng Dakui, et al. Analysis of retracting and releasing cable in towing system considering gas-liquid two phase medium[J]. China Shipbuilding, 2022, 63(3): 249-258.
    [15]
    张锦, 邓玉聪, 郑孝彬, 等. 近水面拖曳浮标测试系统运动特性研究[J]. 舰船科学技术, 2023, 45(4): 133-138.

    Zhang Jin, Deng Yucong, Zheng Xiaobin, et al. Research on the motion characteristics of near-water towed buoy rest system near the water surface[J]. Ship Science and Technology, 2023, 45(4): 133-138.
    [16]
    王飞, 涂卫民, 邓德衡, 等. 水下双阵列拖曳系统缆破断情况下的运动响应[J]. 上海交通大学学报, 2020, 54(2): 211-220.

    Wang Fei, Tu Weimin, Deng Deheng, et al. Research on motion characteristics of near-water towed buoy test system[J]. Journal of Shanghai Jiao Tong University, 2020, 54(2): 211-220.
    [17]
    朱克强, 李道根, 李维扬. 海洋缆体系统的统一凝集参数时域分析法[J]. 海洋工程, 2002, 20(2): 100-104.

    Zhu Keqiang, Li Daogen, Li Weiyang. Lumped-parameter analysis method for time-domain of ocean cable-body systems[J]. The Ocean Engineering, 2002, 20(2): 100-104.
    [18]
    李志彤, 董凌宇, 陆凯, 等. 深海拖曳系统水下控制技术研究[J]. 海洋地质前沿, 2023, 39(3): 30-39.

    Li Zhitong, Dong Lingyu, Lu Kai, et al. Research on underwater control technology of deep-sea towing system[J]. Marine Geology Frontiers, 2023, 39(3): 30-39.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article Views(35) PDF Downloads(10) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return