• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
Volume 31 Issue 6
Dec  2023
Turn off MathJax
Article Contents
YAN Linbo, ZHANG Jiansheng. Monte Carlo Simulation of Photon Transmission Time in Wake Bubble Curtain[J]. Journal of Unmanned Undersea Systems, 2023, 31(6): 864-870. doi: 10.11993/j.issn.2096-3920.202212003
Citation: YAN Linbo, ZHANG Jiansheng. Monte Carlo Simulation of Photon Transmission Time in Wake Bubble Curtain[J]. Journal of Unmanned Undersea Systems, 2023, 31(6): 864-870. doi: 10.11993/j.issn.2096-3920.202212003

Monte Carlo Simulation of Photon Transmission Time in Wake Bubble Curtain

doi: 10.11993/j.issn.2096-3920.202212003
  • Received Date: 2022-12-18
  • Accepted Date: 2023-03-14
  • Rev Recd Date: 2023-02-05
  • Available Online: 2023-06-19
  • At present, the Monte Carlo simulation of the wake bubble curtain is mostly used to simulate the photon scattering direction, and few scholars have studied the distribution of photon transmission time. In this paper, based on the volume scattering function of Henyey-Greestein, a forward scattering model of pulsed laser in water was established. The propagation process of photons in bubble curtain was simulated by the Monte Carlo method based on this model, and the distribution of transmission time of photons in water containing bubble curtain was obtained. The model was used to simulate the photon transmission time under different bubble curtain thicknesses, bubble sizes, and detection distances. The simulation results show that greater thickness of the bubble curtain indicates longer photon transmission time in the bubble curtain and greater backward movement of the pulsed laser, which is manifested as a broader and wider pulsed laser. A larger bubble size represents a greater scattering degree of the laser by the bubble and greater backward movement of the pulsed laser. As the distance between the laser light source and the bubble curtain becomes larger, the photon transmission time is shifted backward, and the pulse width and peak intensity change slightly. According to the start-stop time of photons detected by the detector and the peak change of photon number, the characteristics of wake can be reflected, thus realizing the accurate positioning, identification, and measurement of wake.

     

  • loading
  • [1]
    Davis G E. Scattering of light by an air bubble in water[J]. Journal of the Optical Society of America, 1955, 45(7): 572-581.
    [2]
    Arnott W P, Marston P L. Optical glory of small freely rising gas bubbles in water: Observed and computed cross-polarized backscattering patterns[J]. Journal of the Optical Society of America A, 1988, 5(4): 496-506. doi: 10.1364/JOSAA.5.000496
    [3]
    Akbar M K, Ghiaasiaan S M. Monte Carlo simulation of aerosol transport in rising gas bubbles[J]. Journal of Aerosol Science, 2006, 37: 735-749.
    [4]
    张建生. 尾流的光学特性研究与测量[D]. 西安: 中国科学院西安光学精密仪器研究所, 2001.
    [5]
    张建生, 孙传东, 冀邦杰, 等. 水中气泡的运动规律和光学散射特性[J]. 鱼雷技术, 2000, 8(1): 22-25, 48.

    Zhang Jiansheng, Sun Chuandong, Ji Bangjie, et al. Motion law and optical scattering characteristics of bubbles in water[J]. Torpedo Technology, 2000, 8(1): 22-25, 48.
    [6]
    Cao J, Wang J A, Jiang X Z, et al. Monte Carlo simulation of optical properties of wake bubbles[J]. Chinese Physics Letters, 2007, 24(2): 479-482. doi: 10.1088/0256-307X/24/2/049
    [7]
    Xia M, Yang K C, Zhang X H, et al. Monte Carlo simulation of backscattering signal from bubbles under water[J]. Institute of Physics Publishing, 2006, 8(3): 350-354.
    [8]
    孙春生, 张晓晖. 舰船远程尾流气泡群的前向光散射特性研究[J]. 激光杂志, 2008, 163(4): 40-41.

    Sun Chunsheng, Zhang Xiaohui. Study on the forward scattering characteristics of bubbles in warship long-range Wake[J]. Laser Journal, 2008, 163(4): 40-41.
    [9]
    韩彪, 刘继芳, 周少杰, 等. 基于Fournier Forand光脉冲后向散射特征分析模型[J]. 光子学报, 2011, 40(10): 1590-1594. doi: 10.3788/gzxb20114010.1590

    Han Biao, Liu Jifang, Zhou Shaojie, et al. Based on Fournier Forand light pulse backscattering characteristic analysis model[J]. Acta Photonica Sinica, 2011, 40(10): 1590-1594. doi: 10.3788/gzxb20114010.1590
    [10]
    韩彪, 刘继芳, 周少杰, 等. 激光脉冲宽度对远距离尾流气泡后向检测的影响[J]. 光子学报, 2011, 40(9): 1372-1375. doi: 10.3788/gzxb20114009.1372

    Han Biao, Liu Jifang, Zhou Shaojie, et al. Influence of laser pulse width on backward detection of long-distance wake bubbles[J]. Acta Photonica Sinica, 2011, 40(9): 1372-1375. doi: 10.3788/gzxb20114009.1372
    [11]
    张家利, 张建生, 文丽. 舰船尾流气泡后向光散射特性研究[J]. 科技资讯, 2010(33): 8-10.

    Zhang Jiali, Zhang Jiansheng, Wen Li. Study on backscattering characteristics of ship wake bubbles[J]. Science and Technology Information, 2010(33): 8-10.
    [12]
    杨郁, 张建生. 偏振状态下船舰尾流的光散射特性[J]. 西安工业大学学报, 2012, 32(10): 789-794.

    Yang Yu, Zhang Jiansheng. Light scattering characteristics of ship wake in polarized state[J]. Journal of Xi’an Technology University, 2012, 32(10): 789-794.
    [13]
    孙建鹏, 张建生, 陈焱. 淡水和盐水中模拟气泡幕前向光散射特性[J]. 西北大学学报(自然科学版), 2014, 44(1): 31-36.

    Sun Jianpeng, Zhang Jiansheng, Chen Yan. Forward light scattering characteristics of simulated bubble curtain in fresh water and salt water[J]. Journal of Northwest University(Natural Science Edition), 2014, 44(1): 31-36.
    [14]
    陈焱, 孙建鹏, 常洋, 等. 模拟舰船尾流气泡的前向散射[J]. 西安工业大学学报, 2013, 33(6): 444-448.

    Chen Yan, Sun Jianpeng, Chang Yang, et al. Forward scattering of simulated ship wake bubbles[J]. Journal of Xi’an Technology University, 2013, 33(6): 444-448.
    [15]
    宗思光, 张鑫, 曹静, 等. 舰船尾流激光探测跟踪方法与试验[J]. 红外与激光工程, 2023(3): 197-208.

    Zong Siguang, Zhang Xin, Cao Jing, et al. Laser detection and tracking method and experiment of ship wake[J]. Infrared and laser engineering, 2023(3): 197-208.
    [16]
    曹静, 康颖, 王江安. 水中气泡光学特性的蒙特卡洛模拟[J]. 激光与红外, 2006, 36(5): 392-395.

    Cao Jing, Kang Ying, Wang Jiangan. Monte Carlo simulation of optical characteristics of bubbles in water[J]. Laser and Infrared, 2006, 36(5): 392-395.
    [17]
    陈焱. 气泡幕激光散射的空间分布[D]. 西安: 西安工业大学, 2013.
    [18]
    朱陆陆. 蒙特卡洛方法及应用[D]. 武汉: 华中师范大学, 2014.
    [19]
    Bashkatova T A, Bashkatov A N, Kochubey V, et al. Light scattering properties for spherical and cylindrical particles: A simple approximation derived from Mie calculations[C]//Proceedings of SPIE-The International Society for Optical Engineering. [S.l.]: SPIE, 2001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article Views(85) PDF Downloads(27) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return