• 中国科技核心期刊
  • JST收录期刊
Volume 31 Issue 6
Dec  2023
Turn off MathJax
Article Contents
WAN Xiaohui, PENG Shi, ZHANG Haibo, PENG Shun, DAI Wenliu, CHEN Zhaoren. Vertical Launch Trajectory Modeling and Range Influence Law of Shipborne Depth Charge[J]. Journal of Unmanned Undersea Systems, 2023, 31(6): 926-933. doi: 10.11993/j.issn.2096-3920.2022-0087
Citation: WAN Xiaohui, PENG Shi, ZHANG Haibo, PENG Shun, DAI Wenliu, CHEN Zhaoren. Vertical Launch Trajectory Modeling and Range Influence Law of Shipborne Depth Charge[J]. Journal of Unmanned Undersea Systems, 2023, 31(6): 926-933. doi: 10.11993/j.issn.2096-3920.2022-0087

Vertical Launch Trajectory Modeling and Range Influence Law of Shipborne Depth Charge

doi: 10.11993/j.issn.2096-3920.2022-0087
  • Received Date: 2022-12-05
  • Accepted Date: 2023-03-14
  • Rev Recd Date: 2023-02-14
  • Available Online: 2023-11-30
  • The vertical launch of shipborne depth charge can greatly improve platform adaptability and combat effectiveness, which is of great significance in improving the combat capability of ships. This paper took a vertical cold launch depth charge as the prototype and set up a vertical launch trajectory calculation model of depth charge according to the vertical launch kinematics and dynamics equations. Based on this model, the paper considered the projectile mass, total impulse, initial muzzle velocity, turning height, terminal angle of attack, pitch angle at the end of turning, lift coefficient, drag coefficient, and other influence factors and calculated and analyzed the influence of shipborne depth charge range. The results show that: 1) The range is positively correlated with the total impulse, initial muzzle velocity, turning height, terminal angle of attack, and lift coefficient, while it is negatively correlated with the projectile mass, pitch angle at the end of turning, and drag coefficient; 2) the projectile mass, total impulse, initial muzzle velocity, and pitch angle at the end of turning have great influence on the depth charge range, while the terminal angle of attack, lift coefficient, and drag coefficient have relatively little influence on the depth charge range. In addition, the turning height has almost no influence on the depth charge range. The simulation results can provide a reference for the overall vertical launch and trajectory design of the depth charge.

     

  • loading
  • [1]
    孙东平, 冯林平, 范作娥. 舰艇垂直发射系统现状及发展趋势分析[J]. 飞航导弹, 2020(8): 78-81.
    [2]
    梁良, 贾跃, 任磊. 国外舰载助飞鱼雷发展综述[J]. 鱼雷技术, 2014, 22(2): 157-160.

    Liang Liang, Jia Yue, Ren Lei. Review of foreign shipborne assisted torpedoes[J]. Torpedo Technology, 2014, 22(2): 157-160.
    [3]
    刘永亮, 任克亮, 马旭轮, 等. 新形势下舰载垂直发射装置发展趋势[J]. 装备环境工程, 2019, 16(7): 60-63.

    Liu Yongliang, Ren Keliang, Ma Xulun, et al. Development tendency of ship vertical launcher in new situation[J]. Equipment Environmental Engineering, 2019, 16(7): 60-63.
    [4]
    赵亚鹏, 陈延伟, 张旭耀. 深水炸弹垂直发射技术初探[J]. 数字海洋与水下攻防, 2018, 1(1): 81-84.

    Zhao Yapeng, Chen Yanwei, Zhang Xuyao, et al. Research on vertical launch technology of depth charge[J]. Digital Ocean & Underwater Warfare, 2018, 1(1): 81-84.
    [5]
    洪浩, 王洋洋. 垂发自导深弹发展设想[J]. 数字海洋与水下攻防, 2021, 4(2): 107-112.

    Hong Hao, Wang Yangyang. Development conceptions of vertical-launched homing depth charge[J]. Digital Ocean & Underwater Warfare, 2021, 4(2): 107-112.
    [6]
    崔洪坤, 孙振新. 飞航式火箭助飞鱼雷弹道建模与仿真[J]. 指挥控制与仿真, 2012, 34(2): 75-79.

    Cui Hongkun, Sun Zhenxin. Ballistic modeling and simulation of cruising rocket-assisted torpedo[J]. Command Control & Simulation, 2012, 34(2): 75-79.
    [7]
    王齐双, 刘钧圣, 谭天汉, 等. 基于四元数的垂直发射导弹数学建模及控制策略研究[J]. 弹箭与制导学报, 2021, 41(1): 40-47.

    Wang Qishuang, Liu Junsheng, Tan Tianhan, et al. Modeling and control strategy design of vertically launching missiles based on quaternion[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2021, 41(1): 40-47.
    [8]
    马璐, 孙瑞胜. 垂发超近程导弹弹道优化设计[J]. 现代防御技术, 2018, 46(2): 39-44.

    Ma Lu, Sun Ruisheng. Trajectory optimization design of vertical ultra short range missile[J]. Modern Defence Technology, 2018, 46(2): 39-44.
    [9]
    赵丹辉, 何心怡, 陈兆峰, 等. 火箭自导深弹齐射方法研究[J]. 鱼雷技术, 2014, 22(3): 214-220.

    Zhao Danhui, He Xinyi, Chen Zhaofeng, et al. Study on salvo method of rocket homing depth charges[J]. Torpedo Technology, 2014, 22(3): 214-220.
    [10]
    戴文留, 昌铁强, 廖欢欢, 等. 电磁发射深水炸弹空中弹道性能仿真分析[J]. 数字海洋与水下攻防, 2020, 3(2): 123-128.

    Dai Wenliu, Chang Tieqiang, Liao Huanhuan, et al. Simulation and analysis on air ballistic performance of electromagnetic launching depth charge[J]. Digital Ocean & Underwater Warfare, 2020, 3(2): 123-128.
    [11]
    钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京: 北京理工大学出版社, 2000.
    [12]
    斯维特洛夫[俄]. 防空导弹设计[M]. 北京: 中国宇航出版社, 2004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(10)

    Article Metrics

    Article Views(53) PDF Downloads(18) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return