• 中国科技核心期刊
  • JST收录期刊
Volume 31 Issue 1
Feb  2023
Turn off MathJax
Article Contents
ZHAI Yu-fan, XIONG Ming-lei, WANG Chen, XIE Guang-ming. A Review on Underwater Perception Based on Bio-inspired Artificial Lateral Line System[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 50-67. doi: 10.11993/j.issn.2096-3920.2022-0073
Citation: ZHAI Yu-fan, XIONG Ming-lei, WANG Chen, XIE Guang-ming. A Review on Underwater Perception Based on Bio-inspired Artificial Lateral Line System[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 50-67. doi: 10.11993/j.issn.2096-3920.2022-0073

A Review on Underwater Perception Based on Bio-inspired Artificial Lateral Line System

doi: 10.11993/j.issn.2096-3920.2022-0073
  • Received Date: 2022-11-15
  • Accepted Date: 2022-12-28
  • Rev Recd Date: 2022-12-28
  • Available Online: 2023-01-17
  • The lateral line is a type of unique sensing organ in fish, which helps the fish to perceive information on the surrounding environment underwater. Inspired by this phenomenon, the design and development of an artificial lateral line system and application to underwater robots have garnered much interest in the research of unmanned underwater systems, and attracted extensive attention from scholars worldwide. The research status of the bio-inspired artificial lateral line system is summarized from the perspectives of the bionic principle, structural design, and perception function. Specifically, the results obtained by the author’s team based on box-fish-inspired robots and an artificial lateral line system are introduced, including motion state estimation, attitude holding control, and neighboring perception. Through the summary and analysis of the existing research and results, future development directions for the underwater bio-inspired artificial lateral line system are provided, including the design optimization of sensor arrays, flow perception in the natural environment, implementation of obstacle avoidance behavior and swarm behavior.

     

  • loading
  • [1]
    Hassan E S. Hydrodynamic Imaging of the Surroundings by the Lateral Line of the Blind Cave Fish Anoptichthys Jordani[M]//The Mechanosensory Lateral Line. New York, NY: Springer, 1989: 217-227.
    [2]
    Shizhe T. Underwater Artificial Lateral Line Flow Sensors[J]. Microsystem Technologies, 2014, 20(12): 2123-2136. doi: 10.1007/s00542-014-2350-1
    [3]
    Wolf B J, Pirih P, Kruusmaa M, et al. Shape Classification Using Hydrodynamic Detection via a Sparse Large-Scale 2D-Sensitive Artificial Lateral Line[J]. IEEE Access, 2020, 8: 11393-11404. doi: 10.1109/ACCESS.2020.2965316
    [4]
    Mogdans J, Bleckmann H. Coping with Flow: Behavior, Neurophysiology and Modeling of the Fish Lateral Line System[J]. Biological Cybernetics, 2012, 106(11): 627-642.
    [5]
    Northcutt R G. The Phylogenetic Distribution and Innervation of Craniate Mechanoreceptive Lateral Lines[M]//The Mechanosensory Lateral Line. New York, NY: Springer, 1989: 17-78.
    [6]
    Liu G, Wang A, Wang X, et al. A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish[J]. Applied Bionics and Biomechanics, 2016: 4732703.
    [7]
    Maruska K P. Morphology of the Mechanosensory Lateral Line System in Elasmobranch Fishes: Ecological and Behavioral Considerations[J]. Environmental Biology of Fishes, 2001, 60(1): 47-75.
    [8]
    Coombs S, Janssen J, Webb J F. Diversity of Lateral Line Systems: Evolutionary and Functional Considerations[M]//Sensory Biology of Aquatic Animals. New York, NY: Springer, 1988: 553-593.
    [9]
    Mchenry M J, Strother J A, van Netten S M. Mechanical Filtering by the Boundary Layer and Fluid-Structure Interaction in the Superficial Neuromast of the Fish Lateral Line System[J]. Journal of Comparative Physiology A, 2008, 194(9): 795-810. doi: 10.1007/s00359-008-0350-2
    [10]
    Münz H. Morphology and Innervation of the Lateral Line System Insarotherodon Niloticus(L.)(Cichlidae, Teleostei)[J]. Zoomorphologie, 1979, 93(1): 73-86. doi: 10.1007/BF02568676
    [11]
    van Netten S M. Hydrodynamic Detection by Cupulae in a Lateral Line Canal: Functional Relations between Physics and Physiology[J]. Biological Cybernetics, 2006, 94(1): 67-85. doi: 10.1007/s00422-005-0032-x
    [12]
    Jiang Y, Ma Z, Zhang D. Flow Field Perception Based on the Fish Lateral Line System[J]. Bioinspiration & Biomimetics, 2019, 14(4): 041001.
    [13]
    Zhai Y, Zheng X, Xie G. Fish Lateral Line Inspired Flow Sensors and Flow-Aided Control: A Review[J]. Journal of Bionic Engineering, 2021, 18(2): 264-291. doi: 10.1007/s42235-021-0034-y
    [14]
    谢广明, 郑兴文, 翟宇凡. 仿生机器鱼人工侧线感知技术[M]. 北京: 人民邮电出版社, 2022.
    [15]
    Fan Z, Chen J, Zou J, et al. Design and Fabrication of Artificial Lateral Line Flow Sensors[J]. Journal of Micromechanics and Microengineering, 2002, 12(5): 655. doi: 10.1088/0960-1317/12/5/322
    [16]
    Chen J, Fan Z, Zou J, et al. Two-Dimensional Micromachined Flow Sensor Array for Fluid Mechanics Studies[J]. Journal of Aerospace Engineering, 2003, 16(2): 85-97. doi: 10.1061/(ASCE)0893-1321(2003)16:2(85)
    [17]
    Chen N, Tucker C, Engel J M, et al. Design and Characterization of Artificial Haircell Sensor for Flow Sensing with Ultrahigh Velocity and Angular Sensitivity[J]. Journal of Microelectromechanical Systems, 2007, 16(5): 999-1014. doi: 10.1109/JMEMS.2007.902436
    [18]
    Yang Y, Chen N, Tucker C, et al. From Artificial Hair Cell Sensor to Artificial Lateral Line System: Development and Application[C]//2007 IEEE 20th International Conference on Micro Electro Mechanical Systems(MEMS). Kobe, Japan: IEEE, 2007: 577-580.
    [19]
    Chen N, Chen J, Engel J, et al. Development and Characterization of High Sensitivity Bioinspired Artificial Haircell Sensor[C]//Proceedings of Solid-State Sensors, Actuators, and Microsystems Workshop. Hilton, Head, USA: [s. n.] 2006, 6: 4-8.
    [20]
    Yang Y, Nguyen N, Chen N, et al. Artificial Lateral Line with Biomimetic Neuromasts to Emulate Fish Sensing[J]. Bioinspiration & Biomimetics, 2010, 5(1): 016001.
    [21]
    McConney M E, Chen N, Lu D, et al. Biologically Inspired Design of Hydrogel-Capped Hair Sensors for Enhanced Underwater Flow Detection[J]. Soft Matter, 2009, 5(2): 292-295. doi: 10.1039/B808839J
    [22]
    Qualtieri A, Rizzi F, Todaro M T, et al. Stress-Driven ALN Cantilever-Based Flow Sensor for Fish Lateral Line System[J]. Microelectronic Engineering, 2011, 88(8): 2376-2378. doi: 10.1016/j.mee.2011.02.091
    [23]
    Qualtieri A, Rizzi F, Epifani G, et al. Parylene-Coated Bioinspired Artificial Hair Cell for Liquid Flow Sensing[J]. Microelectronic Engineering, 2012, 98: 516-519. doi: 10.1016/j.mee.2012.07.072
    [24]
    Kottapalli A G P, Bora M, Asadnia M, et al. Nanofibril Scaffold Assisted MEMS Artificial Hydrogel Neuromasts for Enhanced Sensitivity Flow Sensing[J]. Scientific Reports, 2016, 6: 19336. doi: 10.1038/srep19336
    [25]
    Kottapalli A G P, Asadnia M, Miao J, et al. Touch at a Distance Sensing: Lateral-Line Inspired MEMS Flow Sensors[J]. Bioinspiration & Biomimetics, 2014, 9(4): 046011.
    [26]
    Zhang Z, Zhou C, Cao Z, et al. A Speed Measurement Method for Underwater Robots Using an Artificial Lateral Line Sensor[J]. Smart Materials and Structures, 2021, 31(1): 015011.
    [27]
    Fernandez V I, Hou S M, Hover F S, et al. Lateral-Line Inspired MEMS-Array Pressure Sensing for Passive Underwater Navigation[R]. Cambridge, MA: Massachusetts Institute of Technology. Sea Grant College Program, 2007.
    [28]
    Jiang Y, Ma Z, Fu J, et al. Development of a Flexible Artificial Lateral Line Canal System for Hydrodynamic Pressure Detection[J]. Sensors, 2017, 17(6): 1220. doi: 10.3390/s17061220
    [29]
    Yaul F M, Bulovic V, Lang J H. A Flexible Underwater Pressure Sensor Array Using a Conductive Elastomer Strain Gauge[J]. Journal of Microelectromechanical Systems, 2012, 21(4): 897-907. doi: 10.1109/JMEMS.2012.2190714
    [30]
    Kottapalli A G P, Asadnia M, Miao J M, et al. A Flexible Liquid Crystal Polymer MEMS Pressure Sensor Array for Fish-Like Underwater Sensing[J]. Smart Materials and Structures, 2012, 21(11): 115030. doi: 10.1088/0964-1726/21/11/115030
    [31]
    Sharif M A, Tan X. A Pressure Difference Sensor Inspired by Fish Canal Lateral Line[J]. Bioinspiration & Biomimetics, 2019, 14(5): 055003.
    [32]
    Asadnia M, Kottapalli A G P, Shen Z, et al. Flexible and Surface-Mountable Piezoelectric Sensor Arrays for Underwater Sensing in Marine Vehicles[J]. IEEE Sensors Journal, 2013, 13(10): 3918-3925. doi: 10.1109/JSEN.2013.2259227
    [33]
    Asadnia M, Kottapalli A G P, Miao J, et al. Artificial Fish Skin of Self-Powered Micro-Electromechanical Systems Hair Cells for Sensing Hydrodynamic Flow Phenomena[J]. Journal of the Royal Society Interface, 2015, 12(111): 20150322. doi: 10.1098/rsif.2015.0322
    [34]
    Asadnia M, Kottapalli A G P, Karavitaki K D, et al. From Biological Cilia to Artificial Flow Sensors: Biomimetic Soft Polymer Nanosensors with High Sensing Performance[J]. Scientific Reports, 2016, 6: 32955. doi: 10.1038/s41598-016-0001-8
    [35]
    Abdulsadda A T, Tan X. Underwater Source Localization Using an IPMC-Based Artificial Lateral Line[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011: 2719-2724.
    [36]
    Tan S, Wang Y. An Artificial Lateral Line Sensor Using Polyvinylidene Fluoride(PVDF) Membrane for Oscillatory Flow Sensing[J]. IEEE Access, 2022, 10: 15771-15785. doi: 10.1109/ACCESS.2022.3148165
    [37]
    Krijnen G, Lammerink T, Wiegerink R, et al. Cricket Inspired Flow-Sensor Arrays[C]//Sensors, 2007 IEEE. Atlanta, USA: IEEE, 2007: 539-546.
    [38]
    van Baar J J, Dijkstra M, Wiegerink R J, et al. Fabrication of Arrays of Artificial Hairs for Complex Flow Pattern Recognition[C]//Sensors, 2003 IEEE. Toronto, Canada: IEEE, 2003: 332-336.
    [39]
    Izadi N, de Boer M J, Berenschot J W, et al. Fabrication of Superficial Neuromast Inspired Capacitive Flow Sensors[J]. Journal of Micromechanics and Microengineering, 2010, 20(8): 085041. doi: 10.1088/0960-1317/20/8/085041
    [40]
    Stocking J B, Eberhardt W C, Shakhsheer Y A, et al. A Capacitance-Based Whisker-Like Artificial Sensor for Fluid Motion Sensing[C]//Sensors, 2010 IEEE. Waikoloa, USA: IEEE, 2010: 2224-2229.
    [41]
    Klein A, Bleckmann H. Determination of Object Position, Vortex Shedding Frequency and Flow Velocity Using Artificial Lateral Line Canals[J]. Beilstein Journal of Nanotechnology, 2011, 2(1): 276-283.
    [42]
    Große S, Schröder W. The Micro-Pillar Shear-Stress Sensor MPS3 for Turbulent Flow[J]. Sensors, 2009, 9(4): 2222-2251. doi: 10.3390/s90402222
    [43]
    Wolf B J, Morton J A S, MacPherson W N, et al. Bio-Inspired All-Optical Artificial Neuromast for 2D Flow Sensing[J]. Bioinspiration & Biomimetics, 2018, 13(2): 026013.
    [44]
    Wolf B J, Warmelink S, van Netten S M. Recurrent Neural Networks for Hydrodynamic Imaging Using a 2D-Sensitive Artificial Lateral Line[J]. Bioinspiration & Biomimetics, 2019, 14(5): 055001.
    [45]
    Pandya S, Yang Y, Jones D L, et al. Multisensor Processing Algorithms for Underwater Dipole Localization and Tracking Using MEMS Artificial Lateral-Line Sensors[J]. EURASIP Journal on Advances in Signal Processing, 2006, 2006: 1-8.
    [46]
    Liu P, Zhu R, Que R. A Flexible Flow Sensor System and Its Characteristics for Fluid Mechanics Measurements[J]. Sensors, 2009, 9(12): 9533-9543. doi: 10.3390/s91209533
    [47]
    Yang Y, Chen J, Engel J, et al. Distant Touch Hydrodynamic Imaging with an Artificial Lateral Line[J]. Proceedings of the National Academy of Sciences, 2006, 103(50): 18891-18895. doi: 10.1073/pnas.0609274103
    [48]
    Chen J, Engel J, Chen N, et al. Artificial Lateral Line and Hydrodynamic Object Tracking[C]//19th IEEE International Conference on Micro Electro Mechanical Systems. Istanbul, Turkey: IEEE, 2006: 694-697.
    [49]
    DeVries L, Paley D A. Observability-Based Optimization for Flow Sensing and Control of an Underwater Vehicle in a Uniform Flowfield[C]//2013 American Control Conference. Washington DC, USA: IEEE, 2013: 1386-1391.
    [50]
    Ahrari A, Lei H, Sharif M A, et al. Design Optimization of Artificial Lateral Line System under Uncertain Con- ditions[C]//2015 IEEE Congress on Evolutionary Computation. Sendai, Japan: IEEE, 2015: 1807-1814.
    [51]
    Ahrari A, Lei H, Sharif M A, et al. Design Optimization of an Artificial Lateral Line System Incorporating Flow and Sensor Uncertainties[J]. Engineering Optimization, 2017, 49(2): 328-344. doi: 10.1080/0305215X.2016.1168108
    [52]
    Ahrari A, Lei H, Sharif M A, et al. Reliable Underwater Dipole Source Characterization in 3D Space by an Optimally Designed Artificial Lateral Line System[J]. Bioinspiration & Biomimetics, 2017, 12(3): 036010.
    [53]
    Colvert B, Kanso E. Fishlike Rheotaxis[J]. Journal of Fluid Mechanics, 2016, 793: 656-666. doi: 10.1017/jfm.2016.141
    [54]
    Liu G, Wang M, Wang A, et al. Research on Flow Field Perception Based on Artificial Lateral Line Sensor System[J]. Sensors, 2018, 18(3): 838. doi: 10.3390/s18030838
    [55]
    Weber P, Arampatzis G, Novati G, et al. Optimal Flow Sensing for Schooling Swimmers[J]. Biomimetics, 2020, 5(1): 10. doi: 10.3390/biomimetics5010010
    [56]
    Verma S, Papadimitriou C, Lüthen N, et al. Optimal Sensor Placement for Artificial Swimmers[J]. Journal of Fluid Mechanics, 2020, 884: A24.
    [57]
    Xu D, Lv Z, Zeng H, et al. Sensor Placement Optimization in the Artificial Lateral Line Using Optimal Weight Analysis Combining Feature Distance and Variance Evaluation[J]. ISA Transactions, 2019, 86: 110-121. doi: 10.1016/j.isatra.2018.10.039
    [58]
    Xu D, Zhang Y, Tian J, et al. Optimal Sensor Placement of the Artificial Lateral Line for Flow Parametric Identification[J]. Sensors, 2021, 21(12): 3980. doi: 10.3390/s21123980
    [59]
    Salumäe T, Kruusmaa M. Flow-Relative Control of an Underwater Robot[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469(2153): 20120671. doi: 10.1098/rspa.2012.0671
    [60]
    Tuhtan J A, Fuentes-Perez J F, Toming G, et al. Man-Made Flows from a Fish’s Perspective: Autonomous Classification of Turbulent Fishway Flows with Field Data Collected Using an Artificial Lateral Line[J]. Bioinspiration & Biomimetics, 2018, 13(4): 046006.
    [61]
    Liu G, Liu S, Wang S, et al. Research on Artificial Lateral Line Perception of Flow Field Based on Pressure Difference Matrix[J]. Journal of Bionic Engineering, 2019, 16(6): 1007-1018. doi: 10.1007/s42235-019-0113-5
    [62]
    Fuentes-Pérez J F, Tuhtan J A, Carbonell-Baeza R, et al. Current Velocity Estimation Using a Lateral Line Probe[J]. Ecological Engineering, 2015, 85: 296-300. doi: 10.1016/j.ecoleng.2015.10.008
    [63]
    Strokina N, Kämäräinen J K, Tuhtan J A, et al. Joint Estimation of Bulk Flow Velocity and Angle Using a Lateral Line Probe[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 65(3): 601-613.
    [64]
    Tuhtan J A, Fuentes-Perez J F, Toming G, et al. Flow Velocity Estimation Using a Fish-Shaped Lateral Line Probe with Product-Moment Correlation Features and a Neural Network[J]. Flow Measurement and Instrumentation, 2017, 54: 1-8. doi: 10.1016/j.flowmeasinst.2016.10.017
    [65]
    Liu G, Hao H, Yang T, et al. Flow Field Perception of a Moving Carrier Based on an Artificial Lateral Line System[J]. Sensors, 2020, 20(5): 1512. doi: 10.3390/s20051512
    [66]
    Bleckmann H. Reception of Hydrodynamic Stimuli in Aquatic and Semiaquatic Animals[M]. [S. I.]: G. Fischer Verlag, 1994.
    [67]
    Ren Z, Mohseni K. A Model of the Lateral Line of Fish for Vortex Sensing[J]. Bioinspiration & Biomimetics, 2012, 7(3): 036016.
    [68]
    Pollard B, Tallapragada P. Learning Hydrodynamic Signatures through Proprioceptive Sensing by Bioinspired Swimmers[J]. Bioinspiration & Biomimetics, 2021, 16(2): 026014.
    [69]
    Venturelli R, Akanyeti O, Visentin F, et al. Hydrodynamic Pressure Sensing with an Artificial Lateral Line in Steady and Unsteady Flows[J]. Bioinspiration & Biomimetics, 2012, 7(3): 036004.
    [70]
    Free B, Patnaik M K, Paley D A. Observability-Based Path-Planning and Flow-Relative Control of a Bioinspired Sensor Array in a Karman Vortex Street[C]//2017 American Control Conference. Seattle, USA: IEEE, 2017: 548-554.
    [71]
    Free B A, Paley D A. Model-Based Observer and Feedback Control Design for a Rigid Joukowski Foil in a Kármán Vortex Street[J]. Bioinspiration & Biomimetics, 2018, 13(3): 035001.
    [72]
    Yen W K, Guo J. Phase Controller for a Robotic Fish to Follow an Oscillating Source[J]. Ocean Engineering, 2018, 161: 77-87. doi: 10.1016/j.oceaneng.2018.04.082
    [73]
    Liu G, Gao S, Sarkodie-Gyan T, et al. A Novel Biomimetic Sensor System for Vibration Source Perception of Autonomous Underwater Vehicles Based on Artificial Lateral Lines[J]. Measurement Science and Technology, 2018, 29(12): 125102. doi: 10.1088/1361-6501/aae128
    [74]
    Tang Z, Wang Z, Lu J, et al. Underwater Robot Detection System Based on Fish’s Lateral Line[J]. Electronics, 2019, 8(5): 566. doi: 10.3390/electronics8050566
    [75]
    Zheng X, Zhang Y, Ji M, et al. Underwater Positioning Based on an Artificial Lateral Line and a Generalized Regression Neural Network[J]. Journal of Bionic Engineering, 2018, 15(5): 883-893. doi: 10.1007/s42235-018-0075-z
    [76]
    Lin X, Zhang Y, Ji M, et al. Dipole Source Localization Based on Least Square Method and 3D Printing[C]//2018 IEEE International Conference on Mechatronics and Automation(ICMA). Changchun, China: IEEE, 2018: 2203-2208.
    [77]
    Abdulsadda A T, Tan X. Nonlinear Estimation-Based Dipole Source Localization for Artificial Lateral Line Systems[J]. Bioinspiration & Biomimetics, 2013, 8(2): 026005.
    [78]
    Chen X, Zhu G, Yang X, et al. Model-Based Estimation of Flow Characteristics Using an Ionic Polymer-Metal Composite Beam[J]. IEEE/ASME Transactions on Mechatronics, 2012, 18(3): 932-943.
    [79]
    Abdulsadda A T, Tan X. Localization of a Moving Dipole Source Underwater Using an Artificial Lateral Line[C]//Bioinspiration, Biomimetics, and Bioreplication 2012. San Diego, USA: SPIE, 2012, 8339: 84-91.
    [80]
    Dagamseh A M K, Lammerink T S J, Bruinink C M, et al. Dipole Source Localisation Using Bio-Mimetic Flow-Sensor Arrays[J]. Procedia Chemistry, 2009, 1(1): 891-894. doi: 10.1016/j.proche.2009.07.222
    [81]
    Dagamseh A M K, Lammerink T S J, Wiegerink R J, et al. A Simulation Study of the Dipole Source Localisation Applied on Bio-Mimetic Flow-Sensor Linear Array[C]//12th Annual Workshop on Semiconductor Advances for Future Electronics and Sensors(SAFE). Veldhoven, Netherlands: [s. n.], 2009: 534-537.
    [82]
    Dagamseh A M K, Krijnen G J M. Map Estimation of Air-Flow Dipole Source Positions Using Array Signal Processing[C]//Annual Workshop on Semiconductor Advances for Future Electronics and Sensors, SAFE. Veldhoven, Netherlands: [s. n. ], 2010.
    [83]
    Dagamseh A M K, Lammerink T S J, Kolster M L, et al. Dipole-Source Localization Using Biomimetic Flow-Sensor Arrays Positioned as Lateral-Line System[J]. Sensors and Actuators A: Physical, 2010, 162(2): 355-360. doi: 10.1016/j.sna.2010.02.016
    [84]
    Dagamseh A, Wiegerink R, Lammerink T, et al. Imaging Dipole Flow Sources Using an Artificial Lateral-Line System Made of Biomimetic Hair Flow Sensors[J]. Journal of the Royal Society Interface, 2013, 10(83): 20130162. doi: 10.1098/rsif.2013.0162
    [85]
    Ji M, Zhang Y, Zheng X, et al. Resolution Improvement of Dipole Source Localization for Artificial Lateral Lines Based on Multiple Signal Classification[J]. Bioinspiration & Biomimetics, 2018, 14(1): 016016.
    [86]
    Ji M, Zhang Y, Zheng X, et al. Performance Evaluation and Analysis for Dipole Source Localization with Lateral Line Sensor Arrays[J]. Measurement Science and Technology, 2019, 30(11): 115107. doi: 10.1088/1361-6501/ab2a46
    [87]
    Wolf B J, van Netten S M. Hydrodynamic Imaging Using an All-Optical 2D Artificial Lateral Line[C]//2019 IEEE Sensors Applications Symposium. Sophia Antipolis, France: IEEE, 2019: 1-6.
    [88]
    Jiang Y, Gong Z, Yang Z, et al. Underwater Source Localization Using an Artificial Lateral Line System with Pressure and Flow Velocity Sensor Fusion[J]. IEEE/ASME Transactions on Mechatronics, 2021, 27(1): 245-255.
    [89]
    Wang M, Jin B, Liu G, et al. The Moving Vibration Source Perception Using Bionic Lateral Line System and Data-Driven Method[J]. Ocean Engineering, 2022, 247: 110463. doi: 10.1016/j.oceaneng.2021.110463
    [90]
    Liu Y, Hu Q, Yang Q, et al. An Underwater Moving Dipole Tracking Method of Artificial Lateral Line Based on Intelligent Optimization and Recursive Filter[J]. Measurement Science and Technology, 2022, 33(7): 075113. doi: 10.1088/1361-6501/ac5de9
    [91]
    Chambers L D, Akanyeti O, Venturelli R, et al. A Fish Perspective: Detecting Flow Features while Moving Using an Artificial Lateral Line in Steady and Unsteady Flow[J]. Journal of the Royal Society Interface, 2014, 11(99): 20140467. doi: 10.1098/rsif.2014.0467
    [92]
    Liu H, Zhong K, Fu Y, et al. Pattern Recognition for Robotic Fish Swimming Gaits Based on Artificial Lateral Line System and Subtractive Clustering Algorithms[J]. Sensors & Transducers, 2014, 182(11): 207.
    [93]
    Kruusmaa M, Toming G, Salumäe T, et al. Swimming Speed Control and On-Board Flow Sensing of an Artificial Trout[C]//2011 IEEE International Conference on Robotics and Automation. Zhuhai, China: IEEE, 2011: 1791-1796.
    [94]
    Salumäe T, Ranó I, Akanyeti O, et al. Against the Flow: A Braitenberg Controller for a Fish Robot[C]//2012 IEEE International Conference on Robotics and Automation. Saint Paul, USA: IEEE, 2012: 4210-4215.
    [95]
    Zhang F, Lagor F D, Yeo D, et al. Distributed Flow Sensing for Closed-Loop Speed Control of a Flexible Fish Robot[J]. Bioinspiration & Biomimetics, 2015, 10(6): 065001.
    [96]
    DeVries L, Lagor F D, Lei H, et al. Distributed Flow Estimation and Closed-Loop Control of an Underwater Vehicle with a Multi-Modal Artificial Lateral Line[J]. Bioinspiration & Biomimetics, 2015, 10(2): 025002.
    [97]
    Lagor F D, DeVries L D, Waychoff K M, et al. Bio-Inspired Flow Sensing and Control: Autonomous Underwater Navigation Using Distributed Pressure Measurements[C]//18th International Symposium on Unmanned Untethered Submersible Technology. Portsmouth, USA: [s. n. ], 2013.
    [98]
    Kang S, Chou W, Yu J. Estimation System of Disturbance Force and Torque for Underwater Robot Based on Artificial Lateral Line[J]. Applied Sciences, 2022, 12(6): 3060. doi: 10.3390/app12063060
    [99]
    Nelson K, Mohseni K. Hydrodynamic Force Decoupling Using a Distributed Sensory System[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3235-3242. doi: 10.1109/LRA.2020.2976331
    [100]
    Liu G, Wang M, Xu L, et al. A New Bionic Lateral Line System Applied to Pitch Motion Parameters Perception for Autonomous Underwater Vehicles[J]. Applied Ocean Research, 2020, 99: 102142. doi: 10.1016/j.apor.2020.102142
    [101]
    Martiny N, Sosnowski S, Kühnlenz K, et al. Design of a Lateral-Line Sensor for an Autonomous Underwater Vehicle[J]. IFAC Proceedings Volumes, 2009, 42(18): 292-297. doi: 10.3182/20090916-3-BR-3001.0051
    [102]
    Yen W K, Sierra D M, Guo J. Controlling a Robotic Fish to Swim along a Wall Using Hydrodynamic Pressure Feedback[J]. IEEE Journal of Oceanic Engineering, 2018, 43(2): 369-380. doi: 10.1109/JOE.2017.2785698
    [103]
    Yang Z, Gong Z, Jiang Y, et al. Maximized Hydrodynamic Stimulation Strategy for Placement of Differential Pressure and Velocity Sensors in Artificial Lateral Line Systems[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2170-2177. doi: 10.1109/LRA.2022.3143203
    [104]
    Li S, Yang W, Xu L, et al. An Environmental Perception Framework for Robotic Fish Formation Based on Machine Learning Methods[J]. Applied Sciences, 2019, 9(17): 3573. doi: 10.3390/app9173573
    [105]
    Yen W K, Huang C F, Chang H R, et al. Localization of a Leading Robotic Fish Using a Pressure Sensor Array on Its Following Vehicle[J]. Bioinspiration & Biomimetics, 2020, 16(1): 016007.
    [106]
    Li G, Kolomenskiy D, Liu H, et al. Hydrodynamical Fingerprint of a Neighbour in a Fish Lateral Line[J]. Frontiers in Robotics and AI, 2022, 9: 825889.
    [107]
    Zheng X, Wang C, Fan R, et al. Artificial Lateral Line Based Local Sensing between Two Adjacent Robotic Fish[J]. Bioinspiration & Biomimetics, 2017, 13(1): 016002.
    [108]
    Zheng X, Wang W, Li L, et al. Artificial Lateral Line Based Relative State Estimation between an Upstream Oscillating Fin and a Downstream Robotic Fish[J]. Bioinspiration & Biomimetics, 2020, 16(1): 016012.
    [109]
    Zheng X, Wang M, Zheng J, et al. Artificial Lateral Line Based Longitudinal Separation Sensing for Two Swimming Robotic Fish with Leader-Follower Formation[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. Macao, China: IEEE, 2019: 2539-2544.
    [110]
    Zheng X, Xiong M, Xie G. Data-Driven Modeling for Superficial Hydrodynamic Pressure Variations of Two Swimming Robotic Fish with Leader-Follower Formation[C]//2019 IEEE International Conference on Systems, Man and Cybernetics(SMC). Bari, Italy: IEEE, 2019: 4331-4336.
    [111]
    Muhammad N, Strokina N, Toming G, et al. Flow Feature Extraction for Underwater Robot Localization: Preliminary Results[C]//2015 IEEE International Conference on Robotics and Automation. Seattle, USA: IEEE, 2015: 1125-1130.
    [112]
    Fuentes-Pérez J F, Muhammad N, Tuhtan J A, et al. Map-Based Localization in Structured Underwater Environment Using Simulated Hydrodynamic Maps and an Artificial Lateral Line[C]//2017 IEEE International Conference on Robotics and Biomimetics. Macao, China: IEEE, 2017: 128-134.
    [113]
    Bartol I K, Gharib M, Webb P W, et al. Body-Induced Vortical Flows: A Common Mechanism for Self-Corrective Trimming Control in Boxfishes[J]. Journal of Experimental Biology, 2005, 208(2): 327-344. doi: 10.1242/jeb.01356
    [114]
    Bartol I K, Gordon M S, Webb P, et al. Evidence of Self-Correcting Spiral Flows in Swimming Boxfishes[J]. Bioinspiration & Biomimetics, 2008, 3(1): 014001.
    [115]
    Kodati P, Deng X. Towards the Body Shape Design of a Hydrodynamically Stable Robotic Boxfish[C]//2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2006: 5412-5417.
    [116]
    Wang W, Dai X, Li L, et al. Three-Dimensional Modeling of a Fin-Actuated Robotic Fish with Multimodal Swimming[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(4): 1641-1652. doi: 10.1109/TMECH.2018.2848220
    [117]
    Zheng X, Xiong M, Tian R, et al. Three-dimensional Dynamic Modeling and Motion Analysis of a Fin-actuated Robot[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(4): 1990-1997.
    [118]
    Wang C, Wang W, Xie G. Speed Estimation for Robotic Fish Using Onboard Artificial Lateral Line and Inertial Measurement Unit[C]//2015 IEEE International Conference on Robotics and Biomimetics. Zhuhai, China: IEEE, 2015: 285-290.
    [119]
    Wang W, Li Y, Zhang X, et al. Speed Evaluation of a Freely Swimming Robotic Fish with an Artificial Lateral Line[C]//2016 IEEE International Conference on Robotics and Automation(ICRA). Stockholm, Sweden: IEEE, 2016: 4737-4742.
    [120]
    Zheng X, Wang W, Xiong M, et al. Online State Estimation of a Fin-Actuated Underwater Robot Using Artificial Lateral Line System[J]. IEEE Transactions on Robotics, 2020, 36(2): 472-487. doi: 10.1109/TRO.2019.2956343
    [121]
    Zheng J, Zheng X, Zhang T, et al. Dual-Sensor Fusion Based Attitude Holding of a Fin-Actuated Robotic Fish[J]. Bioinspiration & Biomimetics, 2020, 15(4): 046003.
    [122]
    Zheng J, Zhang T, Wang C, et al. Learning for Attitude Holding of a Robotic Fish: An End-to-End Approach with Sim-to-Real Transfer[J]. IEEE Transactions on Robotics, 2021, 38(2): 1287-1303.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)

    Article Metrics

    Article Views(272) PDF Downloads(106) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return